Screening of Cultivable Protease-Producing Bacteria in Marshy Sediments of Mangrove Forests

Authors

  • Sarika Chhabria Talreja  Assistant Professor, Smt. C.H.M. College, Ulhasnagar, Maharashtra, India
  • Chandra B. Maurya  Associate Professor, H.O.D., Department of Chemistry, G. N. Khalsa College, Matunga, Mumbai, Maharashtra, India

Keywords:

Proteases, Protease-Producing Bacteria, Marshy Land, Mangroves, 16S Rrna Sequencing.

Abstract

Mangroves, the coastal wetland forests are the natural inhabitants of variety of microbes especially halophilic bacteria. These halophilic bacteria are prevalent in ocean sediments and play crucial roles in degradation of sedimentary nitrogenous organic materials. The halophilic microorganisms are loaded with potential hydrolytic enzymes to be used in industrial and/or in many biotechnological processes. The bacterial diversity of mangroves in India and variety of their proteases inhabitants are largely unknown. This ambiguity is ascribed to enclosed ecosystem of mangrove region. This study is an attempt to unearth the expediency of mangrove forest for their variety of proteases. For this, bacterial samples were collected from Marshy Sediments of Mangrove Forests, Goa, India and were screened for proteases. Twenty isolates exhibited the proteolytic activity on Casein agar and Gelatin agar plates containing 3% (w/v) NaCl. All the isolates were identified by morphological and molecular characteristics. 16S rRNA sequence analysis showed their homology to Bacillus sp. Qualitative and quantitative enzyme essays revealed potential proteases from B2 and B3 bacterial strains. This study provided novel insights on the community structure of cultivable protease-producing bacteria in the marshy areas of Mangrove forests of Goa.

References

  1. Anil S. R., R. Arunasri., Y.  Jayachandra and M. B.  Sulochana., 2010, “Screening  of extracellular hydrolytic enzymes from Marinobacter hydrocarbonoclasticus strain ak5”, The Bioscan Int. J. of Life Science, 5(1), pp. 97 – 99  
  2. Bowman. J.P., McCuaig R.D., 2003. “Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment”, Appl Environ Microbiol, 69: 2463-2483. doi:10.1128/AEM.69.5.2463-2483.2003
  3. Chen .X.L., Zhang Y.Z., Gao PJ, Luan XW., 2003, “Two different proteases produced by a deep-sea psychotropic bacterial strain, Pseudoalteromonas sp. SM9913”, Mar Biol 143: 989-993. Doi: 10.1007/s00227-003-1128-2.
  4. Dajanta K., Wongkham S., Thirach P., Baophoeng P., Apichatsrangkoon A.,Santithum P., Chukeatirote E., 2009, “Comparative study of proteolytic activity of protease producing bacteria isolated from thua nao” Maejo Int J Sci Technol 3:269-276.
  5. Gerday C., Aittaleb M., Bentahir M., Chessa J.P, Claverie P. et al., 2000, “Cold-adapted enzymes: from fundamentals to biotechnology”, Trends Biotechnol 18: 103-107. Doi: 10.1016/S0167-7799(99)01413-4. Pub Med: 10675897.
  6. Gray J.P. and Herwig R.P., 1996, “Phylogenetic analysis of the bacterial communities in marine sediments”, Appl Environ Microbiol 62: 4049-4059.
  7. Gupta, N., Das, S. and Basak, U.C., 2007, “Useful extracellular activity of bacteria isolated from Bhitarkanika mangrove ecosystem of Orissa coast”, Malaysian Journal of Microbiology, 3(2), pp. 15-18. 
  8. Hanan S.A. 2012, “Isolation and screening of extracellular protease produced by new isolated Bacillus sp”. J App Pharm Sci 2:71-74.
  9. Hunter E.M., Mills H.J., Kostka J.E., 2006, “Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments”. Appl Environ Microbiol 72: 5689-5701. doi:10.1128/AEM.03007-05.
  10. Lerson H. 2001, Halophilic and halotolerant microorganisms: an overview and historical perspective. FEMS Microbiol Rev 39:3-7.
  11. Li H., Yu Y., Luo W., Zeng Y., Chen B., 2009, “Bacterial diversity in surface sediments from the Pacific Arctic Ocean”, Extremophiles 13: 233-246. doi: 10.1007/s00792-009-0225-7.
  12. Liao L., Xu XW, Wang C.S., Zhang D.S., Wu M., 2009, Bacterial and archaeal communities in the surface sediment from the northern slope of the South China Sea. J Zhejiang Univ Sci B 10: 890-901. doi:10.1631/jzus.B0920181.
  13. Loperena L., Soria V., Varela H., Lupo S., Bergalli A., 2012, Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 28: 2249-2256. Doi: 10.1007/s11274-012-1032-3.
  14. Maurer K.H., 2004, Detergent proteases. Curr Opin Biotechnol 15:330-334.
  15. Nercessian O., Fouquet Y., Pierre C., Prieur D., Jeanthon C., 2005, Diversity of Bacteria and Archaea associated with a carbonate-rich metalliferous sediment sample from the Rainbow vent field on the Mid-Atlantic Ridge. Environ Microbiol 7: 698-714. doi:10.1111/j.1462-2920.2005.00744.x.
  16. Olivera N.L., Sequeiros C., Nievas M.L., 2007, Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles 11: 517-526. Doi: 10.1007/s00792-007-0064-3.
  17. Oren A., 2002, Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39:1-7.
  18. Polymenakou P.N., Bertilsson S., Tselepides A., Stephanou E.G., 2005, Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries. Microb Ecol 50: 447-462. Doi: 10.1007/s00248-005-0005-6.
  19. Ramanathan, A L., 2008, A study of microbial diversity and its interaction with nutrients in the sediments of Sundarban mangroves, IJMS Volume 37(2), pp 159-165. 
  20. Sahoo K.  , N.K. Dhal, (2009), Potential microbial diversity in mangrove ecosystem, A review Indian journal of marine sciences, 38(2), pp 249-256 
  21. Shivaji S., Chaturvedi P., Begum Z., Pindi P.K., Manorama R., Padamanabhan D.A., Shouche Y.S., Pawar S., Vaishampayan P., Dutt C.B., Datta G.N., Manchanda R.K., Rao U.R., Bhargava P.M., Narlikar J.V., 2009, Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int J Syst Evol Microbiol 59:2977-2986.
  22. Sohrin Y., Iwamoto S., Matsui M., Obata H, Nakayama E.,2000, The distribution of Fe in the Australian sector of the Southern Ocean. Deep Sea Res II 47: 55-84. Doi: 10.1016/S0967-0637(99)00049-7.
  23. Suk-ueng N., Buranapratheprat A., Gunbua V., Leadprathom N., 2013, Mangrove composition and structure at the Welu Estuary, Khlung District, Chanthaburi Province, Thailand. IOSR-JESTFT 7:17-24.
  24. Talbot V, Bianchi M., 1997, Bacterial proteolytic activity in sediments of the Subantarctic Indian Ocean sector. Deep Sea Res II 44: 1069-1084. Doi: 10.1016/S0967-0645(96)00107-5.
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., 2011, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731-2739. doi:10.1093/molbev/msr121.
  26. Taprig T., Akaracharanya A., Sitdhipol J., Visessanguan W., Tanasupawat S., 2013, Screening and characterization of protease-producing Virgibacillus, Halobacillus and Oceanobacillus strains from Thai fermented fish. J App Pharm Sci 3:25-30.
  27. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G., 1997, The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876-4882. doi:10.1093/nar/25.24.4876.
  28. Van Trappen S., Vandecandelaere I., Mergaert J., Swings J., 2004, Flavobacterium degerlachei sp.nov., Flavobacterium frigoris sp.nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54: 85-92. doi:10.1099/ijs.0.02857-0.
  29. Vazquez S., Merino L.R., MacCormack W., Fraile E., 1995, Protease-producing psychotropic bacteria isolated from Antarctica. Polar Biol 15: 131-135.
  30. Vázquez S.C., Hernández E., Mac Cormack W.P., 2008, Extracellular proteases from the Antarctic marine Pseudoalteromonas sp. P96-47 strain. Rev Argent Microbiol 40: 63-71.
  31. Vazquez S.C., MacCormack W.P., 2002, Effect of isolation temperature on the characteristics of extracellular proteases produced by Antarctic bacteria. Polar Res 21: 63-71. doi:10.1111/j.1751-8369.2002.tb00067.x.
  32. Ventosa A., Nieto J.J., Oren A., 1998, Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504-544.
  33. Whitaker T., 1982, Primary production of phytoplankton off Signy Island, South Orkneys, the Antarctic. Proc R Soc Lond B Biol Sci 214: 169-189. doi:10.1098/rspb.1982.0003.
  34. Xiong H., Song L., Xu Y., Tsoi M.Y., Dobretsov S., 2007, Characterization of proteolytic bacteria from the Aleutian deep-sea and their proteases. J Ind Microbiol Biotechnol 34: 63-71. Pub Med: 16932887.
  35. Xu H.X., Wu M., Wang X.G., Yang J.Y., Wang C.S., 2008, Bacterial diversity in deep-sea sediment from northeastern Pacific Ocean. Acta Ecol Sin 28: 479-485. Doi: 10.1016/S1872-2032(08)60026-8.
  36. Yoon J.H., Kim I.G., Kang K.H., Oh T.K., Park Y.H., 2003, Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 53:1297-1303.
  37. Zhou M.Y., Chen X.L., Zhao H.L., Dang H.Y., Luan X.W., 2009, Diversity of both the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea. Microb Ecol 58: 582-590. Doi: 10.1007/s00248-009-9506-z.

Downloads

Published

2017-12-31

Issue

Section

Research Articles

How to Cite

[1]
Sarika Chhabria Talreja, Chandra B. Maurya, " Screening of Cultivable Protease-Producing Bacteria in Marshy Sediments of Mangrove Forests, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 3, Issue 8, pp.61-73, November-December-2017.