A Comparative Analysis of NFA and Tree-based approach for Infrequent Itemset Mining

Authors(2) :-Kalaiyarasi. P, Prof. Manikandan. M

Frequent itemset mining is an exploratory data mining technique widely used for discovering valuable correlations among data. Frequent itemset mining is a core component of data mining and variations of association analysis, like association rule mining. Extraction of frequent itemsets is a core step in many association analysis techniques. The frequent occurrence of item is expressed in terms of the support count. An item is said to be frequent whose number of occurrences is greater than threshold value. Recently, Infrequent Item sets are also considered to be important in various situations. Infrequent Item set mining is the just the variation of frequent item set mining, where it takes the rarely occurred items in the database. The use of infrequent item set mining is to help for the decision making systems. There are several existing algorithms like Apriori, F-Miner, FP-growth, Residual tree algorithm, Fast algorithm to mine the frequent item sets which takes more computational time. The proposed system is to mine the infrequent item sets by mathematical modeling technique(NFA)where, results in less computing time.

Authors and Affiliations

Kalaiyarasi. P
Department of CSE, Adhiyamaan College of Engineering, Hosur, India
Prof. Manikandan. M
Department of CSE, Adhiyamaan College of Engineering, Hosur, India

Association rule mining (ARM), Itemset mining, Frequent itemsets, Frequent patterns, Infrequent Items, Non-deterministic finite automata(NFA).

Publication Details

Published in : Volume 1 | Issue 1 | January-Febuary 2015
Date of Publication : 2015-02-25
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 108-112
Manuscript Number : IJSRSET151116
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Kalaiyarasi. P, Prof. Manikandan. M, " A Comparative Analysis of NFA and Tree-based approach for Infrequent Itemset Mining, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 1, pp.108-112, January-Febuary-2015.
Journal URL : http://ijsrset.com/IJSRSET151116

Article Preview

Follow Us

Contact Us