Wireless Spectrum Auctions in Market

Authors(3) :-Akshaya.R, Divya.M, Keerthana.K

Wireless spectrum is a scare resource, but in practice much of it is underused by current owners. To enable better use of this spectrum, we propose an auction approach that leverages dynamic spectrum access techniques to allocate spectrum in a secondary market. These are markets where spectrum owners can either sell or lease spectrum to other parties. Thus, unlike unlicensed spectrum (e.g., Wi-Fi), which can be shared by any device, and exclusive-use licensed spectrum, where sharing is precluded, we enable efficient allocation by supporting sharing alongside quality-of-service protections. We present SATYA (Sanskrit for “truth”), a strategyproof and scalable spectrum auction algorithm whose primary contribution is in the allocation of a right to contend for spectrum to both sharers and exclusive-use bidders.Using realistic Longley-Ricebased propagation modeling and data from the FCC’s CDBS database, we conduct extensive simulations that demonstrate SATYA’s ability to handle heterogeneous agent types involving different transmit powers and spectrum needs.

Authors and Affiliations

Akshaya.R
Department of Information Technology Dhanalakshmi College of Engineering, Kancheepuram Chennai, Tamilnadu, India
Divya.M
Department of Information Technology Dhanalakshmi College of Engineering, Kancheepuram Chennai, Tamilnadu, India
Keerthana.K
Department of Information Technology Dhanalakshmi College of Engineering, Kancheepuram Chennai, Tamilnadu, India

[1] â€œShuttle Radar Topography Mission,” http://www2.jpl.nasa. gov/srtm, 2013.

[2] Nat’l Telecomm. & Information Administration, US Department of Commerce, Inst. for Telecomm. Science, “Irregular Terrain Model (ITM) (Longley-Rice) (20 MHz - 20 GHz),” http:// www.its.bldrdoc.gov/resources/radio-propagation-software/ itm/itm.aspx, 2013.
[3] â€œLongley-Rice Methodology for Evaluating TV Coverage and Interference,” OET Bulletin No. 69, Feb. 2004.
[4] â€œEvaluation of the Performance of Prototype TV-Band White Space Devices,” FCC Press Release, Nov. 2008.
[5] L.M. Ausubel and P. Milgrom, The Lovely but Lonely Vickrey Auction, Cramton et al., eds., chapter 1, pp. 17-40, MIT, Aug 2004. [6] A. Blum and J.D. Hartline, “Near-Optimal Online Auctions,” Proc. Symp. Discrete Algorithms (SODA), pp. 1156-1163, 2005.
[6] M.M. Buddhikot, P. Kolodzy, S. Miller, K. Ryan, and J. Evans, “DIMSUMNet: New Directions in Wireless Networking Using Coordinated Dynamic Spectrum Access,” Proc. Int’l Conf. World of Wireless, Mobile and Multimedia Networks ( WOWMOM), 2005.
[7] M.M. Buddhikot and K. Ryan, “Spectrum Management in Coordinated Dynamic Spectrum Access Networks,” Proc. IEEE First Int’l Symp. New Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2005.
[8] M.M. Bykowsky, M.A. Olson, and W.W. Sharkey, “Modeling the Efficiency of Spectrum Designated to Licensed Service and Unlicensed Operations,” FCC OSP Working Paper Series, 2008.
[9] F. Constantin, M. Rao, C.-C. Huang, and D.C. Parkes, “On Expressing Value Externalities in Position Auctions,” Proc. Sixth Ad Auctions Workshop, 2010.
[10] P. Cramton, “Spectrum Auctions,” Handbook of Telecomm. Economics, M. Cave, S. Majumdar, and I. Vogelsang, eds., pp. 605-639 , Elsevier, 2002.
[11] Combinatorial Auctions, P. Cramton, Y. Shoham, and R. Steinberg, eds. MIT, 2006.
[12] â€œTVQ TV Database,” FCC Media Bureau, http://www.fcc.gov/ mb/video/tvq.html.
[13] S. Gandhi, C. Buragohain, L. Cao, H. Zheng, and S. Suri, “A General Framework for Wireless Spectrum Auctions,” Proc. IEEE Second Int’l Symp. New Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2007.
[14] S. Gandhi, C. Buragohain, L. Cao, H. Zheng, and S. Suri, “Towards Real-Time Dynamic Spectrum Auctions,” Computer Networks, vol. 52, no. 4, pp. 879-897, 2008.
[15] A. Ghosh and M. Mahdian, “Externalities in Online Advertising,” Proc. 17th Int’l Conf. World Wide Web (WWW ’08), 2008.
[16] J. Huang, R.A. Berry, and M.L. Honig, “Auction Mechanisms for Distributed Spectrum Sharing,” Proc. 42nd Allerton Conf., 2004.
[17] â€œAnalysis of FCC Secondary Spectrum Markets Positions, Policies and Comments,”white paper, Spectrum Bridge, Aug. 2008.
[18] â€œThe Secondary Spectrum Market: A Licensing and Leasing Primer,”white paper, Spectrum Bridge, Sept. 2008.
[19] K. Jain, J. Padhye, V.N. Padmanabhan, and L. Qiu, “Impact of Interference on Multi-Hop Wireless Network Performance,” Wireless Networks, vol. 11, no. 4, pp. 471-487, 2005.
[20] S. Jain, K. Fill, and R. Patra, “Routing in a Delay Tolerant Network,” Proc. ACM Special Interest Group Data Comm. (SIGCOMM), 2004.
[21] P. Jehiel, B. Moldovanu, and E. Stacchetti, “How (Not) to Sell Nuclear Weapons,” Am. Economic Rev., vol. 84, no. 6, pp. 814-829 , Sept. 1996.
[22] J. Jia, Q. Zhang, Q. Zhang, and M. Liu, “Revenue Generation for Truthful Spectrum Auction in Dynamic Spectrum Access,” Proc. ACM MobiHoc, pp. 3-12, 2009.
[23] G.S. Kasbekar and S. Sarkar, “Spectrum Auction Framework for Access Allocation in Cognitive Radio Networks,” Proc. ACM MobiHoc, pp. 13-22, 2009.
[24] I. Kash, R. Murty, and D. Parkes, “Enabling Spectrum Sharing in Secondary Market Auctions,” Technical Report TR-08-10, Harvard Univ., 2010.
[25] P. Krysta, T. Michalak, T. Sandholm, and M. Wooldridge, “Combinatorial Auctions with Externalities,” Proc. Ninth Int’l Conf. Autonomous Agents and Multiagent Systems (AAMAS ’10), 2010.
[26] J. Li, C. Blake, D.S.J.D. Couto, H.I. Lee, and R. Morris, “Capacity of Ad Hoc Wireless Networks,” Proc. ACM MobiCom, 2001.
[27] V. Mhatre and K. Papagiannaki, “Optimal Design of High Density 802.11 WLANs,” Proc. ACM CoNEXT Conf. (CoNEXT ’06), 2006.
[28] R. Myerson, “Optimal Auction Design,” Math. Operations Research, vol. 6, pp. 58-73, 1981.
[29] D.C. Parkes and Q. Duong, “An Ironing-Based Approach to Adaptive Online Mechanism Design in Single-Valued Domains,” Proc. 22nd Nat’l Conf. Artificial Intelligence (AAAI ’07), pp. 94-101 , 2007.
[30] A. Sridharan and B. Krishnamachari, “Max-Min Fair CollisionFree Scheduling for Wireless Sensor Networks,” Proc. Workshop Multihop Wireless Networks, 2004.
[31] A.P. Subramanian, M. Al-Ayyoub, H. Gupta, S.R. Das, and M.M. Buddhikot, “Near Optimal Dynamic Spectrum Allocation in Cellular Networks,” Proc. IEEE Third Symp. New Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2008.
[32] J. Tang, G. Xue, and W. Zhang, “Maximum Throughput and Fair Bandwidth Allocation in Multi-Channel Wireless Mesh Networks,” Proc. IEEE INFOCOM, 2006.
[33] X. Zhou, S. Gandhi, S. Suri, and H. Zheng, “Ebay in the Sky: Strategy-Proof Wireless Spectrum Auctions,” Proc. ACM MobiCom, pp. 2-13, 2008.
[34] X. Zhou and H. Zheng, “TRUST: A General Framework for Truthful Double Spectrum Auctions,” Proc. IEEE INFOCOM, pp. 999-1007, 2009.
[35] J. Zhu, X. Guo, S. Roy, and K. Papagiannaki, “CSMA SelfAdaptation Based on Interference Differentiation,” Proc. IEEE Global Telecomm. Conf. (GlobeCom ’07), 2007


Publication Details

Published in : Volume 1 | Issue 1 | January-February 2015
Date of Publication : 2015-02-25
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 344-350
Manuscript Number : IJSRSET151182
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Akshaya.R, Divya.M, Keerthana.K, " Wireless Spectrum Auctions in Market, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 1, pp.344-350, January-February-2015. Citation Detection and Elimination     |     
Journal URL : https://ijsrset.com/IJSRSET151182

Article Preview