Advances in Fracture and Numerical Analysis of Piezoelectric Materials

Authors

  • Yi Xiao  Research School of Engineering, Australian National University, Acton, ACT 2601, Australia

Keywords:

Piezoelectric materials, Green's function, Fracture mechanics

Abstract

This paper presents an overview of crack problems and numerical analysis of piezoelectric materials. Developments in Green’s function, Crack problem, finite element, and boundary element formulation of piezoelectric materials are described. Finally, a brief summary of the approaches discussed is provided and future trends in this field are identified.

References

[1]. Curie J, Curie P. Development par compression de l’eletricite polaire dans les cristaux hemiedres a faces inclines. Comptes Rendus Acad Sci Paris 1880;91: 294.
[2]. Voigt W. General theory of the piezo-and pyroelectric properties of crystals. Abh Gott 1890;36(1).
[3]. Cady W. Piezoelectricity, vols. 1 and 2. New York: Dover Publishers; 1964.
[4]. Tiersten HF. Linear piezoelectric plate vibrations. New York: Springer; 1969.
[5]. Parton VZ, Kudryavtsev BA. Electromagnetoelasticity: piezoelectrics and electrically conductive solids. New York: Gordon and Breach Science Publishers; 1988.
[6]. Ikeda T. Fundamentals of piezoelectricity. New York: Oxford university press; 1996.
[7]. Rogacheva NN. The theory of piezoelectric shells and plates. Boca Raton: CRC Press; 1994.
[8]. Qin QH. Fracture mechanics of piezoelectric materials: WIT Press, Southampton; 2001.
[9]. Qin QH. Green's function and boundary elements of multifield materials: Elsevier, Oxford; 2007.
[10]. Qin QH. Advanced mechanics of piezoelectricity: Higher Education Press and Springer, Beijing; 2013.
[11]. Qin QH. Mechanics of Cellular Bone Remodeling: Coupled Thermal, Electrical, and Mechanical Field Effects: CRC Press, Taylor & Francis, Boca Raton; 2013.
[12]. Qin QH, Yang QS. Macro-micro theory on multifield coupling behaivor of hetereogenous materials: Higher Education Press and Springer, Beijing; 2008.
[13]. Diao S, Qin QH, Dong J. On branched interface cracks between two piezoelectric materials. Mechanics research communications 1996;23(6): 615-20.
[14]. Qin QH, Mai YW. Crack branch in piezoelectric bimaterial system. International Journal of Engineering Science 2000;38(6): 673-93.
[15]. Qin QH, Zhang X. Crack deflection at an interface between dissimilar piezoelectric materials. International Journal of Fracture 2000;102(4): 355-70.
[16]. Fu D, Hou Z, Qin QH, Xu L, Zeng Y. Influence of Shear Stress on Behaviors of Piezoelectric Voltages in Bone. Journal of Applied Biomechanics 2012;28(4): 387-93.
[17]. Fu DH, Hou ZD, Qin QH. Analysis of the waveforms of piezoelectric voltage of bone. Journal of Tianjin University 2006;39: 349-53.
[18]. Fu DH, Hou ZD, Qin QH. Influence of a notch on the piezoelectric voltages in bone. Engineering Mechanics 2011;28(1): 233-37.
[19]. Fu DH, Hou ZD, Qin QH, Lu C. On the Influence of Relative Humidity on Piezoelectric Signals in Bone. Journal of Experimental Mechanics 2009;24(5): 473-78.
[20]. Hou Z, Fu D, Qin QH. An exponential law for stretching–relaxation properties of bone piezovoltages. International Journal of Solids and Structures 2011;48(3): 603-10.
[21]. Xu L, Hou Z, Fu D, Qin Q-H, Wang Y. Stretched exponential relaxation of piezovoltages in wet bovine bone. Journal of the Mechanical Behavior of Biomedical Materials 2015;41: 115-23.
[22]. He X, Qu C, Qin QH. A theoretical model for surface bone remodeling under electromagnetic loads. Archive of Applied Mechanics 2008;78(3): 163-75.
[23]. Qin QH. Thermoelectroelastic solutions for internal bone remodelling under constant loads. Mechanics of electromagnetic solids 2003;3: 73-88.
[24]. Qin QH. Multi-field bone remodeling under axial and transverse loads. In: Boomington DR, editor. New research on biomaterials. New York: Nova Science Publishers; 2007. 49-91.
[25]. Qin QH, Qu C, Ye J. Thermoelectroelastic solutions for surface bone remodeling under axial and transverse loads. Biomaterials 2005;26(33): 6798-810.
[26]. Qin QH, Ye JQ. Thermoelectroelastic solutions for internal bone remodeling under axial and transverse loads. International Journal of Solids and Structures 2004;41(9): 2447-60.
[27]. Qu C, He X, Qin QH. Bone functional remodeling under multi-field loadings. Proceedings of the 5th Australasian Congress on Applied Mechanics 2007: 627-32.
[28]. Qu C, Qin QH. Bone remodeling under multi-field coupled loading. Zhineng Xitong Xuebao(CAAI Transactions on Intelligent Systems) 2007;2(3): 52-58.
[29]. Qu C, Qin QH, Kang Y. A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads. Biomaterials 2006;27(21): 4050-57.
[30]. He X, Wang JS, Qin QH. Saint-Venant decay analysis of FGPM laminates and dissimilar piezoelectric laminates. Mechanics of Materials 2007;39(12): 1053-65.
[31]. Hu KQ, Kang YL, Qin QH. A moving crack in a rectangular magnetoelectroelastic body. Engineering Fracture Mechanics 2007;74(5): 751-70.
[32]. Hu KQ, Qin QH, Kang YL. Anti-plane shear crack in a magnetoelectroelastic layer sandwiched between dissimilar half spaces. Engineering Fracture Mechanics 2007;74(7): 1139-47.
[33]. Qin QH. Solving anti-plane problems of piezoelectric materials by the Trefftz finite element approach. Computational Mechanics 2003;31(6): 461-68.
[34]. Liu HY, Qin QH, Mai YW. Theoretical model of piezoelectric fibre pull-out. International Journal of Solids and Structures 2003;40(20): 5511-19.
[35]. Qin QH, Wang JS, Kang YL. A theoretical model for electroelastic analysis in piezoelectric fibre push-out test. Archive of Applied Mechanics 2006;75(8-9): 527-40.
[36]. Wang JS, Qin QH. Debonding criterion for the piezoelectric fibre push-out test. Philosophical Magazine Letters 2006;86(2): 123-36.
[37]. Wang JS, Qin QH, Kang YL. Stress and electric field transfer of piezoelectric fibre push-out under electrical and mechanical loading. Proc of 9th International Conference on Inspection, Appraisal, Repairs & Maintenance of Structures, Fuzhou, China, 20-21 October: CI-Premier PTY LTD, ISBN: 981-05-3548-1; 2005. 435-42.
[38]. Liu Z, Hou Z, Qin QH, Yu Y, Tang L. On electromechanical behaviour of frog sartorius muscles. Engineering in Medicine and Biology Society, 2005 IEEE-EMBS 2005 27th Annual International Conference of the: IEEE; 2006. 1252-55.
[39]. Qin QH. Using GSC theory for effective thermal expansion and pyroelectric coefficients of cracked piezoelectric solids. International Journal of Fracture 1996;82(3): R41-R46.
[40]. Qin QH, Mai YW, Yu SW. Effective moduli for thermopiezoelectric materials with microcracks. International Journal of Fracture 1998;91(4): 359-71.
[41]. Qin QH, Yu SW. Effective moduli of piezoelectric material with microcavities. International Journal of Solids and Structures 1998;35(36): 5085-95.
[42]. Qin QH, Yu SW. Using Mori-Tanaka method for effective moduli of cracked thermopiezoelectric materials. ICF 9-Sydney, Australia-19971997.
[43]. Qin QH. Thermoelectroelastic Green's function for a piezoelectric plate containing an elliptic hole. Mechanics of Materials 1998;30(1): 21-29.
[44]. Qin QH. Thermoelectroelastic Green’s function for thermal load inside or on the boundary of an elliptic inclusion. Mechanics of Materials 1999;31(10): 611-26.
[45]. Qin QH. Green's function for thermopiezoelectric plates with holes of various shapes. Archive of Applied Mechanics 1999;69(6): 406-18.
[46]. Qin QH. Green function and its application for a piezoelectric plate with various openings. Archive of Applied Mechanics 1999;69(2): 133-44.
[47]. Qin QH. Green's functions of magnetoelectroelastic solids with a half-plane boundary or bimaterial interface. Philosophical Magazine Letters 2004;84(12): 771-79.
[48]. Qin QH. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading. Engineering Analysis with Boundary Elements 2005;29(6): 577-85.
[49]. Qin QH. Green’s functions of magnetoelectroelastic solids and applications to fracture analysis. Proc of 9th International Conference on Inspection, Appraisal, Repairs & Maintenance of Structures, Fuzhou, China, 20-21 October,2005: CI-Premier PTY LTD, ISBN: 981-05-3548-1; 2005. 93-106.
[50]. Qin QH, Mai YW. Thermoelectroelastic Green's function and its application for bimaterial of piezoelectric materials. Archive of Applied Mechanics 1998;68(6): 433-44.
[51]. Qin QH. General solutions for thermopiezoelectrics with various holes under thermal loading. International Journal of Solids and Structures 2000;37(39): 5561-78.
[52]. Qin QH, Mai YW. A new thermoelectroelastic solution for piezoelectric materials with various openings. Acta Mechanica 1999;138(1): 97-111.
[53]. Qin QH, Mai YW, Yu SW. Some problems in plane thermopiezoelectric materials with holes. International Journal of Solids and Structures 1999;36(3): 427-39.
[54]. Qin QH. A new solution for thermopiezoelectric solid with an insulated elliptic hole. Acta Mechanica Sinica 1998;14(2): 157-70.
[55]. Qin QH. Thermoelectroelastic analysis of cracks in piezoelectric half-plane by BEM. Computational Mechanics 1999;23(4): 353-60.
[56]. Qin QH. Material properties of piezoelectric composites by BEM and homogenization method. Composite structures 2004;66(1): 295-99.
[57]. Qin QH. Micromechanics-BE solution for properties of piezoelectric materials with defects. Engineering Analysis with Boundary Elements 2004;28(7): 809-14.
[58]. Qin QH. Micromechanics-BEM Analysis for Piezoelectric Composites. Tsinghua Science & Technology 2005;10(1): 30-34.
[59]. Qin QH. Boundary Element Method. In: Yang JS, editor. Special Topics in the Theory of Piezoelectricity. Cambridge Massachusetts: Springer; 2009. 137-68.
[60]. Qin QH. Analysis of Piezoelectric Solids through Boundary Element Method. J Appl Mech Eng 2012;2(1): e113.
[61]. Qin QH, Mai YW. BEM for crack-hole problems in thermopiezoelectric materials. Engineering Fracture Mechanics 2002;69(5): 577-88.
[62]. Qin QH. Mode III fracture analysis of piezoelectric materials by Trefftz BEM. Structural Engineering and Mechanics 2005;20(2): 225-40.
[63]. Qin QH. Thermopiezoelectric interaction of macro-and micro-cracks in piezoelectric medium. Theoretical and Applied Fracture Mechanics 1999;32(2): 129-35.
[64]. Qin QH. Variational formulations for TFEM of piezoelectricity. International Journal of Solids and Structures 2003;40(23): 6335-46.
[65]. Qin QH. Fracture Analysis of Piezoelectric Materials by Boundary and Trefftz Finite Element Methods. WCCM VI in conjunction with APCOM’04, Sept 5-10, 2004, Beijing, China 2004.
[66]. Qin QH. Trefftz Plane Element of Piezoelectric Plate with p-Extension Capabilities. IUTAM Symposium on Mechanics and Reliability of Actuating Materials 2006: 144-53.
[67]. Cao C, Qin QH, Yu A. Hybrid fundamental-solution-based FEM for piezoelectric materials. Computational Mechanics 2012;50(4): 397-412.
[68]. Cao C, Yu A, Qin QH. A new hybrid finite element approach for plane piezoelectricity with defects. Acta Mechanica 2013;224(1): 41-61.
[69]. Wang H, Qin QH. Fracture analysis in plane piezoelectric media using hybrid finite element model. International Conference of fracture2013.
[70]. Qin QH, Lu M. BEM for crack-inclusion problems of plane thermopiezoelectric solids. International Journal for Numerical Methods in Engineering 2000;48(7): 1071-88.
[71]. Qin QH. Thermoelectroelastic solution for elliptic inclusions and application to crack–inclusion problems. Applied Mathematical Modelling 2000;25(1): 1-23.
[72]. Qin QH, Mai YW. Crack growth prediction of an inclined crack in a half-plane thermopiezoelectric solid. Theoretical and Applied Fracture Mechanics 1997;26(3): 185-91.
[73]. Liu HY, Qin QH, Mai YW. Crack growth in composites with piezoelectric fibers. Proc of the Third Int Conf for Mesomechanics, Xi’an, China, June 13-16: Tsinghua Univ. Press, Vol. 1; 2000. 357-66.
[74]. Qin QH, Mai YW. Multiple cracks in thermoelectroelastic bimaterials. Theoretical and Applied Fracture Mechanics 1998;29(2): 141-50.
[75]. Qin QH, Mai YW. Thermal analysis for cracks near interfaces between piezoelectric materials. Localized Damage 1998: Fifth International Conference on Damage and Fracture Mechanics 1998: 13-22.
[76]. Qin QH, Yu SW. An arbitrarily-oriented plane crack terminating at the interface between dissimilar piezoelectric materials. International Journal of Solids and Structures 1997;34(5): 581-90.
[77]. Qin QH, Yu SW. On the plane piezoelectric problem of a loaded crack terminating at a material interface. Acta Mechanica Solida Sinica 1996;9: 151-58.
[78]. Qin QH, Mai YW. A closed crack tip model for interface cracks in thermopiezoelectric materials. International Journal of Solids and Structures 1999;36(16): 2463-79.
[79]. Qin QH, Mai YW. Crack path selection in piezoelectric bimaterials. Composite structures 1999;47(1): 519-24.
[80]. Qin QH, Wang JS, Li X. Effect of elastic coating on fracture behaviour of piezoelectric fibre with a penny-shaped crack. Composite structures 2006;75(1): 465-71.
[81]. Wang JS, Qin QH. Penny-shaped Crack in a Solid Piezoelectric Cylinder With Two Typical Boundary Conditions. Journal of Beijing University of Technology 2006;32(S1): 29-34.
[82]. Qin QH, Yu S. Logarithmic singularity at crack tips in piezoelectric media. Chinese science bulletin 1996;41(7): 563-66.
[83]. Qiu W, Kang Y, Sun Q, Qin QH, Lin Y. Stress analysis and geometrical configuration selection for multilayer piezoelectric displacement actuator. Acta Mechanica Solida Sinica 2004;17(4): 323-29.
[84]. Qiu W, Kang YL, Qin QH, Sun Q, Xu F. Study for multilayer piezoelectric composite structure as displacement actuator by Moire interferometry and infrared thermography experiments. Materials Science and Engineering: A 2007;452: 228-34.
[85]. Wang JS, Qin QH. Symplectic model for piezoelectric wedges and its application in analysis of electroelastic singularities. Philosophical Magazine 2007;87(2): 225-51.
[86]. Yang QS, Qin QH, Liu T. Interlayer stress in laminate beam of piezoelectric and elastic materials. Composite structures 2006;75(1): 587-92.
[87]. Yang QS, Qin QH, Ma L, Lu X, Cui C. A theoretical model and finite element formulation for coupled thermo-electro-chemo-mechanical media. Mechanics of Materials 2010;42(2): 148-56.
[88]. Yu SW, Qin QH. Damage analysis of thermopiezoelectric properties: Part I—crack tip singularities. Theoretical and Applied Fracture Mechanics 1996;25(3): 263-77.
[89]. Yu SW, Qin QH. Damage analysis of thermopiezoelectric properties: Part II. Effective crack model. Theoretical and Applied Fracture Mechanics 1996;25(3): 279-88.
[90]. Liu J, Liu X, Zhao Y. Green's functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. International Journal of Engineering Science 2001;39(12): 1405-18.
[91]. Gao C, Fan W. Green's functions for generalized 2D problems in piezoelectric media with an elliptic hole. Mechanics research communications 1998;25(6): 685-93.
[92]. Pan E. Three-dimensional Green's functions in anisotropic magneto-electro-elastic bimaterials. Zeitschrift für angewandte Mathematik und Physik ZAMP 2002;53(5): 815-38.
[93]. Yang JH, Lee KY. Penny-shaped crack in a piezoelectric cylinder under electro-mechanical loads. Archive of Applied Mechanics 2003;73(5-6): 323-36.
[94]. Yang J, Lee K. Penny shaped crack in a three-dimensional piezoelectric strip under in-plane normal loadings. Acta Mechanica 2001;148(1-4): 187-97.
[95]. Qin QH. The Trefftz finite and boundary element method. Southampton: WIT Press; 2000.
[96]. Qin QH. Trefftz finite element method and its applications. Applied Mechanics Reviews 2005;58(5): 316-37.

Downloads

Published

2015-06-25

Issue

Section

Research Articles

How to Cite

[1]
Yi Xiao, " Advances in Fracture and Numerical Analysis of Piezoelectric Materials, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 3, pp.89-105, May-June-2015.