An Iterative Method in Asynchronous System using Asynchronous Algorithms

Authors(2) :-Ajitesh S. Baghel, Rakesh Kumar Katare

In this paper, we exhibit a couple of established iterative routines for tackling straight comparisons; such systems are broadly utilized, particularly for the arrangement of vast issues, for example, those emerging from the discretization of direct fractional differential mathematical statements. We depict the iterative or aberrant strategies, which begin from a close estimation to the genuine arrangement and if joined, determine a grouping of close estimates the cycle of reckonings being rehashed till the obliged exactness is gotten. It implies that in iterative routines the measure of calculations relies on upon the exactness needed.

Authors and Affiliations

Ajitesh S. Baghel
Department of Computer Science, A. P. S. Univesity, Rewa Madhya Pradesh, India
Rakesh Kumar Katare
Department of Computer Science, A. P. S. Univesity, Rewa Madhya Pradesh, India

Iteraitive, ashynchornous algorithm

  1. Baudet, G.M. (1978). Asynchronous iterative methods for multiprocessors, Journal of the ACM, 2, pp. 226-244.
  2. Bertsekas, D.P. (1982). Distributed dynamic programming, IEEE Transactions on Automatic Control, AC-27, pp. 610-616.
  3. Bertsekas, D.P. (1983). Distributed asynchronous computation of fixed points, Mathematical Programming, 27, pp. 107-120.
  4. Bertsekas, D.P., and J.N. Tsitsiklis (1989). Parallel and Distributed Computation: Numerical Methods, Prentice Hall, Englewood Cliffs, NJ.
  5. Chazan, D., and W. Miranker (1969). Chaotic relaxation, Linear Algebra and its Applications, 2, pp. 199-222.
  6. Dijkstra, E.W., and C.S. Scholten (1980). Termination detection for diffusing computations, Information Processing Letters, 11, pp. 1-4.
  7. Dubois, M., and F.A. Briggs (1982). Performance of synchronized iterative processes in multiprocessor systems, IEEE Transactions on Software Engineering, 8, pp. 419-431.
  8. E.D. Dekel , Nassimi , S. Sabni. "Parallel matrix and graph algorithms," SIAM J. Comput., 10(4),657-675, 1981.
  9. El Tarazi, M.N. (1982). Some convergence results for asynchronous algorithms, Numerisch Mathematik, 39, pp. 325-340.
  10. Fortune,S; and J. Wyllie. 1978 Parallelelism in random access machines, proceedings of the 10thAnnual ACM Symposium on theory of computing, PP, 114-118
  11. J. Ammon. "Hypercube Connectivity within cc NUMA architectore, Silicon Graphics, 20 ILN," Shoreline Blvd. Ms 565, Mountain View, CA94043.
  12. Kung, H.T. (1976). Synchronized and asynchronous parallel algorithms for multiprocessors, in Algorithms and Complexity, J.F. Traub (Ed.), Academic, pp. 153-200.
  13. Lavenberg, S., R. Muntz, and B. Samadi (1983). Performance analysis of a rollback method for distributed simulation, in Performance 83, A.K. Agrawala and S.K. Tripathi (Eds.), North Holland, pp. 117-132.
  14. Lubachevsky, B., and D. Mitra (1986). A chaotic asynchronous algorithm for computing the fixed point of a nonnegative matrix of unit spectral radius, Journal of the ACM, 33, pp. 130-150.
  15. M. Flynn. Some computer organizations and their effectives. IEEE Trans. Comput., C(21 ):948-960, 1972.
  16. M.J. Quinn. "Parallel Computing," Mc Graw-Hill, INC, 1994.
  17. Miellou, J.C. (1975a). Algorithmes de relaxation chaotique a retards, R.A.IR.O., 9, R-1, pp. 55-82.
  18. Miellou, lC. (1975b). Iterations chaotiques a retards, etudes de la convergence dans Ie cas d'espaces partiellement ordonnes, Comptes Rendus, Academie de Sciences de Paris, 280, Serie A, pp. 233-236.
  19. Miellou, J.C., and P. Spiteri (1985). Un critere de convergences pour des methods generales de point fixe, Mathematical Modelling and Numerical Analysis, 19, pp. 645-669.
  20. Mitra, D., and I. Mitrani (1984). Analysis and optimum performance of two message passing parallel processors synchronized by rollback, in Performance '84, E. Gelenbe (Ed.), North Hol-Iand, pp. 35-50.
  21. S. G. Akl. The Design and Analysis of Parallel Algorithms. Prentice Hall, Englewood Cliffs, 1997.
  22. S. G. Ald. Parallel Computation: Models And Methods. Prentice Hall, Upper Saddle River, 1997.
  23. Uresin, A., and M. Dubois (1986). Generalized asynchronous iterations, in Lecture Q Notes in Computer Science, 237, Springer Verlag, pp. 272-278.
  24. Uresin, A., and M. Dubois (1988a). Sufficient conditions for the convergence of asynchronous iterations, Technical Report, Computer Research Institute, University of Southern California, Los Angeles, California, U.S.A.
  25. Uresin, A. and M. Dubois (1988b). Parallel asynchronous algorithms for discrete data, Technical Report CRI-88-05, Computer Research Institute, University of Southern California, Los Angeles, California, U.S.A.

Publication Details

Published in : Volume 1 | Issue 4 | July-August 2015
Date of Publication : 2015-07-14
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 40-46
Manuscript Number : IJSRSET15141
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Ajitesh S. Baghel, Rakesh Kumar Katare, " An Iterative Method in Asynchronous System using Asynchronous Algorithms, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 4, pp.40-46, July-August-2015.
Journal URL :

Article Preview

Follow Us

Contact Us