IJSRSET calls volunteers interested to contribute towards the scientific development in the field of Science, Engineering and Technology

Home > IJSRSET15141                                                     

An Iterative Method in Asynchronous System using Asynchronous Algorithms


Ajitesh S. Baghel, Rakesh Kumar Katare
  • Abstract
  • Authors
  • Keywords
  • References
  • Details
In this paper, we exhibit a couple of established iterative routines for tackling straight comparisons; such systems are broadly utilized, particularly for the arrangement of vast issues, for example, those emerging from the discretization of direct fractional differential mathematical statements. We depict the iterative or aberrant strategies, which begin from a close estimation to the genuine arrangement and if joined, determine a grouping of close estimates the cycle of reckonings being rehashed till the obliged exactness is gotten. It implies that in iterative routines the measure of calculations relies on upon the exactness needed.

Ajitesh S. Baghel, Rakesh Kumar Katare

Iteraitive, ashynchornous algorithm

  1. Baudet, G.M. (1978). Asynchronous iterative methods for multiprocessors, Journal of the ACM, 2, pp. 226-244.
  2. Bertsekas, D.P. (1982). Distributed dynamic programming, IEEE Transactions on Automatic Control, AC-27, pp. 610-616.
  3. Bertsekas, D.P. (1983). Distributed asynchronous computation of fixed points, Mathematical Programming, 27, pp. 107-120.
  4. Bertsekas, D.P., and J.N. Tsitsiklis (1989). Parallel and Distributed Computation: Numerical Methods, Prentice Hall, Englewood Cliffs, NJ.
  5. Chazan, D., and W. Miranker (1969). Chaotic relaxation, Linear Algebra and its Applications, 2, pp. 199-222.
  6. Dijkstra, E.W., and C.S. Scholten (1980). Termination detection for diffusing computations, Information Processing Letters, 11, pp. 1-4.
  7. Dubois, M., and F.A. Briggs (1982). Performance of synchronized iterative processes in multiprocessor systems, IEEE Transactions on Software Engineering, 8, pp. 419-431.
  8. E.D. Dekel , Nassimi , S. Sabni. "Parallel matrix and graph algorithms," SIAM J. Comput., 10(4),657-675, 1981.
  9. El Tarazi, M.N. (1982). Some convergence results for asynchronous algorithms, Numerisch Mathematik, 39, pp. 325-340.
  10. Fortune,S; and J. Wyllie. 1978 Parallelelism in random access machines, proceedings of the 10thAnnual ACM Symposium on theory of computing, PP, 114-118
  11. J. Ammon. "Hypercube Connectivity within cc NUMA architectore, Silicon Graphics, 20 ILN," Shoreline Blvd. Ms 565, Mountain View, CA94043.
  12. Kung, H.T. (1976). Synchronized and asynchronous parallel algorithms for multiprocessors, in Algorithms and Complexity, J.F. Traub (Ed.), Academic, pp. 153-200.
  13. Lavenberg, S., R. Muntz, and B. Samadi (1983). Performance analysis of a rollback method for distributed simulation, in Performance 83, A.K. Agrawala and S.K. Tripathi (Eds.), North Holland, pp. 117-132.
  14. Lubachevsky, B., and D. Mitra (1986). A chaotic asynchronous algorithm for computing the fixed point of a nonnegative matrix of unit spectral radius, Journal of the ACM, 33, pp. 130-150.
  15. M. Flynn. Some computer organizations and their effectives. IEEE Trans. Comput., C(21 ):948-960, 1972.
  16. M.J. Quinn. "Parallel Computing," Mc Graw-Hill, INC, 1994.
  17. Miellou, J.C. (1975a). Algorithmes de relaxation chaotique a retards, R.A.IR.O., 9, R-1, pp. 55-82.
  18. Miellou, lC. (1975b). Iterations chaotiques a retards, etudes de la convergence dans Ie cas d'espaces partiellement ordonnes, Comptes Rendus, Academie de Sciences de Paris, 280, Serie A, pp. 233-236.
  19. Miellou, J.C., and P. Spiteri (1985). Un critere de convergences pour des methods generales de point fixe, Mathematical Modelling and Numerical Analysis, 19, pp. 645-669.
  20. Mitra, D., and I. Mitrani (1984). Analysis and optimum performance of two message passing parallel processors synchronized by rollback, in Performance '84, E. Gelenbe (Ed.), North Hol-Iand, pp. 35-50.
  21. S. G. Akl. The Design and Analysis of Parallel Algorithms. Prentice Hall, Englewood Cliffs, 1997.
  22. S. G. Ald. Parallel Computation: Models And Methods. Prentice Hall, Upper Saddle River, 1997.
  23. Uresin, A., and M. Dubois (1986). Generalized asynchronous iterations, in Lecture Q Notes in Computer Science, 237, Springer Verlag, pp. 272-278.
  24. Uresin, A., and M. Dubois (1988a). Sufficient conditions for the convergence of asynchronous iterations, Technical Report, Computer Research Institute, University of Southern California, Los Angeles, California, U.S.A.
  25. Uresin, A. and M. Dubois (1988b). Parallel asynchronous algorithms for discrete data, Technical Report CRI-88-05, Computer Research Institute, University of Southern California, Los Angeles, California, U.S.A.

Publication Details

Published in : Volume 1 | Issue 4 | July-August - 2015
Date of Publication Print ISSN Online ISSN
2015-07-14 2395-1990 2394-4099
Page(s) Manuscript Number   Publisher
40-46 IJSRSET15141   Technoscience Academy

Cite This Article

Ajitesh S. Baghel, Rakesh Kumar Katare, "An Iterative Method in Asynchronous System using Asynchronous Algorithms", International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 4, pp.40-46, July-August-2015.
URL : http://ijsrset.com/IJSRSET15141.php

Thomson Reuters

Search Your Article


Impact Factor