Study the Electrochemical Corrosion Behavior, Microstructure and Some Physical Properties of Lead- Calcium Rapidly Solidified Alloys

Authors

  • Abu Bakr El-Bediwi  Metal Physics Lab., Physics Department, Faculty of Science, Mansoura University, Egypt
  • Sanaa Razzaq Abbas  Ministry of Education, Iraq
  • Rizk Mostafa Shalaby  Metal Physics Lab., Physics Department, Faculty of Science, Mansoura University, Egypt
  • Mustafa Kamal  Metal Physics Lab., Physics Department, Faculty of Science, Mansoura University, Egypt

Keywords:

corrosion behavior, Vickers hardness, internal friction, elastic moduli, electrical resistivity, lead-calcium alloys

Abstract

Electrochemical corrosion behavior, microstructure, elastic modulus, Vickers hardness, internal friction and electrical resistivity of lead- calcium rapidly solidified alloys have been investigated. Elastic modulus of Pb99.5-xCa0.5+x (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5 wt. %) alloys increased with increasing Ca content. Also internal friction values of Pb99.5-xCa0.5+x alloys variable decreased with increasing Ca content. But Vickers hardness and thermal diffusivity values of Pb99.5-xCa0.5+x alloys variable increased with increasing Ca content. Electrical resistivity values of Pb99.5-xCa0.5+x alloys decreased with increasing Ca content. The corrosion potential of Pb and Pb99.5-xCa0.5+x (x= 0.2 and 0.5 wt. %) alloys exhibited a negative potential. Also the cathodic and the anodic polarization curves also showed similar corrosion trends. The corrosion resistance of Pb99.5-xCa0.5+x alloy in 0.25 M HCl increased with increasing Ca content ratio. The Pb99Ca1 alloy has best properties for storage battery grids.

References

  1. A. B. El- Bediwi. 2002. AMSE, 75: 3 (2002) 1-12
  2. M. Kamal and A. B. El-Bediwi. 2000. J. Mater. Sci. Mater. Electron. 11 (2000) 519-523
  3. M. Kamal, A. B. El-Bediwi and M. B. Karman. 1998. J. Mater. Sci. Mater. Electron. 9 (1998) 425-428
  4. M. Kamal, S. Mazan, A. B. El-Bediwi and M. El-Naggar. 2002. Radiat. Eff. Def. Sol. 157 (2002) 467-474
  5. A. B. El-Bediwi. 2005. Cryst. Res. Technol. 40: 7 (2005) 688-691
  6. M. Kamal, A. B. El-Bediwi and M. S. Jomaan. 2014. International Journal of Modern Applied Physics, (Nov2014)
  7. C.S. Lakshmi, J.E. Manders, D.M. Rice. 1998. Structure and properties of lead–calcium–tin alloys for battery grids, Journal of Power Sources, 73: 1 (18 May 1998) 23-29
  8. H. Tsubakino, M. Tagami, S. Ioku, A. Yamamoto. 1996. Precipitation in lead-calcium alloys containing tin, Metallurgical and Materials Transactions A, 27: 6 (June 1996) 1675-1682
  9. H. Li, W. X. Guo, H.Y. Chen, D. E. Finlow, H. W. Zhou, C. L. Dou, G. M. Xiao, S. G. Peng, W. W. Wei, H. Wang. 2008. Study on the microstructure and electrochemical properties of lead–calcium–tin–aluminum alloys, Journal of Power Sources 10 (2008) 59
  10. V. A. Dzenzerskii, V. F. Bashev, S. V. Tarasov, V. A. Ivanov, A. A. Kostina, S. V. Korpach. 2014. Structure and properties of a Pb-Ca-Sn battery alloy crystallized under nonequilibrium conditions, Inorganic Materials, 50: 2 (February 2014) 140-144
  11. B. D Cullity, "Element of x-ray diffraction" Ch.10 (1959) 297
  12. Sppinert S and Teffit W. E, ASTM, Proc. 61 (1961) 1221
  13. Schreiber E, Anderson O. L and Soga N, Elastic Constants and their Measurement, McGraw-Hill Book Company, Ch. 4 (1973)

Downloads

Published

2015-08-25

Issue

Section

Research Articles

How to Cite

[1]
Abu Bakr El-Bediwi, Sanaa Razzaq Abbas, Rizk Mostafa Shalaby, Mustafa Kamal, " Study the Electrochemical Corrosion Behavior, Microstructure and Some Physical Properties of Lead- Calcium Rapidly Solidified Alloys, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 4, pp.196-202, July-August-2015.