Literature Survey on Web Personalization

Authors(1) :-Sachin Pardeshi

Retrieve the most relevant information for the Web becomes difficult since the massive amount of documents existing in various formats. It is compulsory for the users to go through the long list of oddments and to choose their relevant one, which is a time overwhelming process. User satisfaction is less important in this aspect. One approach to satisfy the requirements of the user is to personalize the information available on the Web, called Web Personalization. Web Personalization is the process that adapts information or services provided by a Web to the needs of each specific or set of users, taking the facts of the knowledge gained from the users. Web Personalization can be the answer to the information overload problem, as its purpose is to provide users with what they really want or need, without having to ask or search for it unambiguously. It is a multi discipline area for putting together data and producing personalized output for individual users or groups of users. This approach helps the researchers to improve the effectiveness of Information Retrieval (IR) systems. By considering all the benefits of the Web Personalization, this paper presents elaborately the various approaches used by researchers to achieve Web Personalization in Web Mining.

Authors and Affiliations

Sachin Pardeshi
Department of Computer Engineering, R. C. Patel Institute of Technology, Shirpur, India

Information Retrieval, Semantic Web, Ontology, Web Personalization, User Profile, Personalized Search, Personalized Ontology

  1. M. Albanese, A. Picariello, C. Sansone, L. Sansone, “A Web Personalization System based on Web Usage Mining Techniques”, in Proc. of WWW2004, May 2004, New York, USA.
  2. B. Mobasher, H. Dai, T. Luo, Y. Sung, J. Zhu, “Integrating web usage and content mining for more effective Personalization”, in Proc. of the International Conference on Ecommerce and Web Technologies (ECWeb2000), Greenwich, UK, September 2000.
  3. Jiawei Han And Micheline Kamber “Data Mining: Concepts and Techniques”, 2nd ed., Morgan Kaufmann Publishers, March 2006. ISBN 1-55860-901-6.
  4. S. Gauch, J. Chaffee, and A. Pretschner, “Ontology-Based Personalized Search and Browsing” Web Intelligence and Agent Systems, vol. 1, nos. 3/4, pp. 219-234, 2003.
  5. Y. Li and N. Zhong, “Web Mining Model and Its Applications for Information Gathering” Knowledge-Based Systems, vol. 17, pp. 207-217, 2004.
  6. Y. Li and N. Zhong, “Mining Ontology for Automatically Acquiring Web User Information Needs” IEEE Trans. Knowledge and Data Eng., vol. 18, no. 4, pp. 554-568, Apr. 2006.
  7. Morita M., Shinoda, Y., “Information Filtering Based on User Behaviour Analysis and Best Match Retrieval”, in Proceedings of the 17th International ACM-SIGIR Conference on Research and Development in Information Retrieval, 1994, pp. 272-281.
  8. Shardanand U., Pattie M., “Social Information Filtering: Algorithms for Automating "Word of mouth", in Proceedings of the Human Factors in Computing System, Denver, May 1995, pp. 210-217.
  9.  “CGI ocumentation”,
  10.   Xiaohui Tao, Yuefeng Li, and Ning Zhong, “Senior Member, IEEE, “A Personalized Ontology Model for Web Information Gathering”, Ieee Transactions On Knowledge And Data Engineering, Vol. 23, No. 4, April 2011.
  11. information_science%29
  14. Bhaganagare Ravishankar, Dharmadhikari Dipa, “Web Personalization Using Ontology: A Survey”, IOSR Journal of Computer Engineering (IOSRJCE) ISSN : 2278-0661 Volume 1, Issue 3 (May-June 2012), PP 37-45
  15. Xiaohui Tao, Yuefeng Li, and Ning Zhong, Senior Member, IEEE. “A Personalized Ontology Model for Web Information Gathering”, IEEE transactions on Knowledge and Data Engineering, Vol. 23, No. 4, April 2011.
  16. Salton, G., McGill, M.: An Introduction to modern information retrieval. Mc-Graw-Hill, New York, NY (1983)
  17. Micarelli, A., Sciarrone, F., Marinilli, M.: Web document modeling. In Brusilovsky, P., Kobsa, A., Nejdl, W., eds.: The Adaptive Web: Methods and Strategies of Web Personalization. Volume 4321 of Lecture Notes in Computer Science. Springer-Verlag, Berlin Heidelberg New York (2007)
  18. Olston, C., Chi, E.H.: ScentTrails: Integrating browsing and searching on the web. ACM Transactions on Computer-Human Interaction 10(3) (2003) 177-197
  19. Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The vocabulary problem in human-system communication. Commun. ACM 30(11) (1987) 964-971
  20. Freyne, J., Smyth, B.: An experiment in social search. In Bra, P.D., Nejdl, W., eds.: Adaptive Hypermedia and AdaptiveWeb-Based Systems, Third International Conference, AH 2004, Eindhoven, The Netherlands, August 23-26, 2004, Proceedings. Volume 3137 of Lecture Notes in Computer Science., Springer (2004) 95-103
  21. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering of netnews. Proceedings for ACM conference on Computer supported cooperative work, New York, NY, USA, ACM Press (1994) 175-186
  22. Dieberger, A., Dourish, P., H¨o¨ok, K., Resnick, P., Wexelblat, A.: Social navigation: techniques for building more usable systems. Interactions 7(6) (2000) 36-45
  23. Kritikopoulos, A., Sideri, M.: The compass filter: Search engine result personalization using web communities. In Mobasher, B., Anand, S.S., eds.: Intelligent Techniques forWeb Personalization, IJCAI 2003Workshop, ITWP 2003, Acapulco, Mexico, August 11, 2003, Revised Selected Papers. Volume 3169 of Lecture Notes in Computer Science., Springer (2003) 229-240
  24. A. Broder. A taxonomy of web search. SIGIR Forum, 36(2), 2002.
  25. B. Jansen and A. Spink. How are we searching the web? a comparison of nine search engine query logs. Information Processing and Management, 42, 2006.
  26. O. Madani and D. DeCoste. Contextual recommender problems. In Utility Based Data Mining Workshop at KDD, 2005.
  27. M. Pazzani and D. Billsus. Learning and revising user profiles: The identification of interesting web sites. Machine Learning, 27, 1997.
  28. Kleinberg, J.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46 (1999) 604-632
  29. Henzinger, M. 2000. Link analysis in web information retrieval. Bull. of the Technical Committee on Data Engrg., IEEE Computer Soc. 23 3-9
  30. Baumgarten, M., A. G. Bόchner, S. S. Anand, M. D. Mulvenna, J. G. Hughes. 2000. Navigation pattern discovery from internet data. M. Spiliopoulou, B. Masand, eds. Advances in Web Usage Analysis and User Profiling, Lecturer Notes in Computer Science 1836 70-87.
  31. Armstrong, R., D. Freitag, T. Joachims, T. Mitchell. 1995. Web- Watcher: A learning apprentice for the world wide web. AAAI Spring Sympos. on Inform. Gathering from Heterogeneous, Distributed Environments, Stanford, CA, 6-13.
  32. Srivastava, J., R. Cooley, M. Deshpande, P. N. Tan. 2000. Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explorations 1 12-23.
  33. Lin, I. Y., X. M. Huang, M. S. Chen. 1999. Capturing user access patterns in the web for data mining. Proc. of the 11th IEEE Internat. Conf. Tools with Artificial Intelligence, Chicago, IL, 22-29.
  34. Cooley, R., B. Mobasher, J. Srivastava. 1999. Data preparation for mining world wide web browsing patterns. Knowledge and Inform. Systems 1 5-32.
  35. Spiliopoulou, M., B. Mobasher, B. Berendt, M. Nakagawa. 2003. Evaluating the quality of data preparation heuristics in web usage analysis. INFORMS J. on Comput. 15(2) 171-190.
  36. Rose, D.E. & Levinson, D. (2004). Understanding user goals in web search. Proceedings of the 13th International Conference on World Wide Web, pp. 13-19
  37. Smyth, B. (2007). A Community-Based Approach to Personalizing Web Search, Cover Feature, IEEE Computer, 40(8), pp.42-50.
  38. Zigoris, P. & Zhang,Y.(2006). Bayesian Adaptive User Profiling with Explicit and Implicit Feedback, Proceedings of the 2006 ACM CIKM International Conference on Information and Knowledge Management, pp. 397-40
  39. Jansen B.J., Booth D.L., Spink A. (2008). Determining the user informational navigational and transactional intent of web queries, Information Processing Management, Vol. 44 (3), pp. 1251-1266
  40. Can, A.B. & Baykal, N. (2007). MedicoPort: A medical search engine for all, Computer Methods and Programs in Biomedicine, Vol.86, pp.73-86
  41. Zeng Q.T. & Tse T. (2006). Exploring and Developing Consumer Health Vocabularies, Journal of American Medical Information Association, Vol. 13 pp.24-29
  42. Zhiyong L., Kim W. & Wilbur J.W. (2009). Evaluation of query expansion using MeSH in PubMed, Journal of Information Retrieval, Vol. 12 (1), pp. 69-80
  43. Eysenbach, G. & Kohler C. (2002). How Do Consumers Search For And Appraise Health Information On The World Wide Web? Qualitative Study Using Focus Groups, Usability Tests, and In Depth Interviews, British Medical Journal, 2002, Vol. 24 pp.573- 577
  44. Luo, G & Tang, C. (2008). On Iterative intelligent Medical Search, Proceedings of the 31st Annual International ACM Special Interest Group on Information Retrieval, pp. 3-10
  45. H. Lieberman, Letizia: An agent that assists web browsing, in: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 1995, pp. 924–929.
  46. T.W.Yan, M. Jacobsen, H. Garcia-Molina and U. Dayal, From user access patterns to dynamic hypertext linking, in: Proceeding of the Fifth International WorldWideWeb Conference, Paris, 1996.
  47. T. Joachims, D. Freitag and T. Mitchell, Webwatcher: a tour guide for the world wide web, in: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, August 1997, pp. 770–777.
  48. D. Mladenic, Machine learning used by personalWebWatcher, in: Proceedings of the Workshop on Machine Learning and Intelligent Agents (ACAI-99), Chania, Greece, July 1999.
  49. K.L. Wu, P.S. Yu and A. Ballman, Speedtracer: A web usage mining and analysis tool, IBM Systems Journal 37(1) (1998).
  50. M.S. Chen, J.S. Park and P.S. Yu, Data mining for path traversal patterns in a web environment, in: Proceedings of the 16th International Conference on Distributed Computing Systems, 1996, pp. 385–392.
  51. O.R. Zaiane, M. Xin and J. Han, Discovering web access patterns and trends by applying olap and data mining technology on web logs, in: Proceedings of Advances in Digital Libraries Conference (ADL98), Santa Barbara, CA, April 1998.
  52. A.G. B¨uchner and M.D. Mulvenna, Discovering internet marketing intelligence through online analytical web usage mining, ACM SIGMOD Record 27(4) (December 1998), 54–61.
  53. M. Perkowitz and O. Etzioni, Towards adaptive web sites: Conceptual framework and case study, Computer Networks 31(11–16) (May 1999), 1245–1258.
  54. J.-H. Lee and W.-K. Shiu, An adaptive website system to improve effciency with web mining techniques, Advanced Engineering Informatics 18(3) (July 2004), 129–142.
  55. F. Grandi, An annotated bibliography on temporal and evolution aspects in the world wide web, TIMECENTER Technical Report TR-75, University of Bologna, Italy, September 2003.
  56. M. Eirinaki and M. Vazirgiannis, Web site personalization based on link analysis and navigational patterns, ACM Transactions on Internet Technology 7(4) (2007), 21.
  57. S.S. Anand, P. Kearney and M. Shapcott, Generating semantically enriched user profiles for web personalization, ACM Transactions on Internet Technology 7(4) (2007), 22.
  58. R. Baraglia and F. Silvestri, Dynamic personalization of web sites without user intervention, Communications of the ACM 50(2) (2007), 63–67.
  59. H. Chen and S. Dumais. Bringing order to the Web: automatically categorizing search results. Proceedings of the SIGCHI conference on Human factors in computing systems, pages 145–152, 2000.
  60. P. Heymann and H. Garcia-Molina. Collaborative Creation of Communal Hierarchical Taxonomies in Social Tagging Systems. Technical report, Technical Report 2006-10, Computer Science Department, April 2006.
  61. X.Wu, L. Zhang, and Y. Yu. Exploring social annotations for the semantic web. Proceedings of the 15th international conference on World Wide Web, pages 417–426, 2006.
  62. Z. Xu, Y. Fu, J. Mao, and D. Su. Towards the semantic web: Collaborative tag suggestions. Collaborative Web Tagging Workshop at WWW2006, Edinburgh, Scotland,May, 2006.
  63. S. Bao, G. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su. Optimizing web search using social annotations. Proceedings of the 16th international conference on World Wide Web, pages 501–510, 2007.
  64. A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme. Information retrieval in folksonomies: Search and ranking. The Semantic Web: Research and Applications, 4011:411–426, 2006
  65. S. Niwa, T. Doi, and S. Honiden.Web Page Recommender System based on Folksonomy Mining for ITNGŠ06 Submissions. Proceedings of the Third International Conference on Information Technology: New Generations (ITNG’06)-Volume 00, pages 388–393, 2006.
  66. J. Allan, J. Aslam, N. Belkin, C. Buckley, J. Callan, B. Croft, S. Dumais, N. Fuhr, D. Harman, D. Harper, D. Hiemstra, T. Hofmann, E. Hovy, W. Kraaij, J. Lafferty, V. Lavrenko, D. Lewis, L. Liddy, R. Manmatha, A. McCallum, J. Ponte, J. Prager, D. Radev, P. Resnik, S. Robertson, R. Rosenfeld, S. Roukos, M. Sanderson, R. Schwartz, A. Singhal, A. Smeaton, H. Turtle, E. Voorhees, R. Weischedel, J. Xu, and C. Zhai, “Challenges in information retrieval and language modeling,” ACM SIGIR Forum, vol. 37, no. 1, pp. 31–47, 2003.
  67. S. Lawrence, “Context in web search,” IEEE Data Engineering Bulletin, vol. 23, no. 3, pp. 25–32, 2000.
  68. X. Shen, B. Tan, and C. Zhai, “Ucair: Capturing and exploiting context for personalized search,” in Proceedings of the Information Retrieval in Context Workshop, SIGIR IRiX 2005, Salvador, Brazil, August 2005.
  69. J. Teevan, S. Dumais, and E. Horvitz, “Personalizing search via automated analysis of interests and activities,” in Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2005, Salvador, Brazil, August 2005, pp. 449–456.
  70. M. Speretta and S. Gauch, “Personalized search based on user search histories,” in Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2005, Compigne, France, September 2005, pp. 622–628.
  71. A. Micarelli and F. Sciarrone, “Anatomy and empirical evaluation of an adaptive web-based information filtering system,” User Modeling and User-Adapted Interaction, vol. 14, no. 2-3, pp. 159–200, 2004.
  72. F. Gasparetti and A. Micarellli, “A personal agent for browsing and searching,” in Proceedings of the 2nd International Conference on Autonomous Agents, St. Paul, MN, May 1998, pp. 132–139.
  73. D. Mladenic, “Personal webwatcher: Design and implementation,” Technical Report IJS-DP-7472, 1998.
  74. G. Gentili, A. Micarelli, and F. Sciarrone, “Infoweb: An adaptive information filtering system for the cultural heritage domain,” Applied Artificial Intelligence, vol. 17, no. 8-9, pp. 715–744, 2003.
  75. H. Haav and T. Lubi, “A survey of concept-based information retrieval tools on the web,” in 5th East-European Conference, ADBIS 2001, Vilnius, Lithuania, September 2001, pp. 29–41.
  76. S. Gauch, J. Chaffee, and A. Pretschner, “Ontology-based personalized search and browsing,” Web Intelligence and Agent Systems, vol. 1, no. 3-4, 2003.
  77. D. Ravindran and S. Gauch, “Exploting hierarchical relationships in conceptual search,” in Proceedings of the 13th International Conference on Information and Knowledge Management, ACM CIKM 2004, Washington DC, November 2004.
  78. P. A. Chirita, W. Nejdl, R. Paiu, and C. Kohlschutter, “Using odp metadata to personalize search,” in Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2005, Salvador, Brazil, August 2005, pp. 178–185.
  79. C. Ziegler, K. Simon, and G. Lausen, “Automatic computation of semantic proximity using taxonomic knowledge,” in Proceedings of the 15th ACM International Conference on Information and Knowledge Management, CIKM 2006, Arlington, VA, November 2006, pp. 465– 474.
  80. P. Chirita, C. Firan, and W. Nejdl, “Summarizing local context to personalize global web search,” in Proceedings of the 15th ACM International Conference on Information and Knowledge Management, CIKM 2006, Arlington, VA, November 2006, pp. 287–296.
  81. H. Chang, D. Cohn, and A. McCallum, “Learning to create customized authority lists,” in Proceedings of the 7th International Conference on Machine Learning, ICML 2000, San Francisco, CA, July 2000, pp. 127–134.
  82. G. Jeh and J. Widom, “Scaling personalized web search,” in Proceedings of the 12th international conference on World Wide Web, WWW 2003, Budapest, Hungary, May 2003, pp. 271–279.
  83. P. A. Chirita, D. Olmedilla, and W. Nejdl, “Pros: A personalized ranking platform for web search,” in Proceedings of the 3rd International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, AH 2004, Eindhoven, The Netherlands, August 2004.
  84. T. H. Haveliwala, “Topic-sensitive pagerank,” in Proceedings of the 11th International World Wide Web Conference, WWW 2002, Honolulu, Hawaii, May 2002.
  85. F. Qiu and J. Cho, “Automatic identification of user interest for personalized search,” in Proceedings of the 15th InternationalWorld Wide Web Conference, WWW 2006, Edinburgh, Scotland, May 2006, pp. 72

Publication Details

Published in : Volume 1 | Issue 2 | March-April 2015
Date of Publication : 2015-04-25
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 391-402
Manuscript Number : IJSRSET1522121
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Sachin Pardeshi, " Literature Survey on Web Personalization , International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 2, pp.391-402, March-April-2015.
Journal URL :

Article Preview

Follow Us

Contact Us