Numerical Simulation of Double Action Powder Compaction Process

Authors(2) :-Partha A. P, Dr. B. M. Rajaprakash

The extensive utilization of aluminum reinforced with silicon carbide composites in different structural applications has motivated the need to find a cost effective technological production method for these composites. Homogeneity, machinability, and interfacial reaction of the constituents represent the large problems pertaining to these composites. Production of a homogenous, high strength and near net shape structural components made from aluminum-silicon carbide composites can be achieved using powder metallurgy (PM) technology. In the present work double acting compaction process is simulated for four cases of different compositions and compaction densities. The compact pressures and relative densities are plotted. The simulation parameters derived are presented.

Authors and Affiliations

Partha A. P
Bangalore University, Bangalore, Karnataka, India
Dr. B. M. Rajaprakash
Department of Mechanical Engineering, Bangalore University, Bangalore, Karnataka, India

Powder Metallurgy, Cost Effective Techniques, Homogeneity, Machinability

  1. German, R.M.. Powder Metallurgy Science. (2nd ed.). Princeton, NJ: Metal Powder Industries Federation. 1994.
  2. Huo, S., Heath, B., Ryan, D. Applications of powder metallurgy aluminums for automotive valve-trains. SAE International Journal of Materials and Manufacturing 2009, 1(1), 511-15.
  3. Li, Y. Y., Ngai, T. L., Zhang, D. T., Long, Y., Xia, W. Effect of die wall lubrication on warm compaction powder metallurgy. Journal of Materials Processing Technology 2002, 129, 354-8.
  4. PM Modnet, Computer Modelling Group, “Comparison of computer models representing powder compaction process“, Powder Metallurgy.1999,vol. 42, p. 301.
  5. O. Coube and H. Riedel, “Numerical Simulation of Metal Powder Die Compaction with Special Consideration of Cracking”,Powder Metallurgy., 2000, vol. 43, p. 123.
  6. A.C.F. Cocks, “Constitutive Modelling of Powder Compaction and Sintering“, Prog.Material.Science.,2001, vol. 46, p. 201.
  7. E.A. Olevsky, Theory of Sintering: From Discrete to Continuum“, Material. Science. Engineering. Research, 1998, vol. 23, p. 41.
  8. H.E. Exner and T. Kraft, “Review on Computer Simulations of Sintering Processes”, Powder Metallurgy World Congress EPMA, Shrewsbury, U.K., 1998, vol. 2, p. 278.
  9. T. Kraft and H. Riedel, “Numerical Simulation of Solid State Sintering – Model and Application”, Journal of Europe .Ceramics. Society.
  10. T. Kraft, “Optimising Press Tool Shapes by Numerical Simulation of Compaction and Sintering – Application to a Hard Metal Cutting Insert”, Modelling Simulations, Material Science Engineering.
  11. J.Z. Qi, L.M. Chen. New technologies in powder metallurgy J]. Powder Metallurgy Industry, Vol. 14-1 (2004), p. 23-28
  12. Y.Y. Li, N.T. Leo, Z.Y. Xiao, D.T. Zhang, W.P. Chen. Study on Mechanical properties of warm compacted iron-based materials J]. J Cent South Univ Technol (English Edition), Vol. 9-3 (2002), p. 154-158
  13. F. Han. The trend of global PM parts Industry J]. Powder Metallurgy Technology, Vol. 19-4(2001), p. 508-51 1.
  14. G. Nagile, T. Altan. Simulation of manufacturing processes: past, Present and future C]. 7th ICTP, Yokohama, Japan. Oct. 2002, vol. 1: 271-281
  15. Zahlan, N. Knight, D.T., Backhouse, A. and Leiper, G.A., “Modelling powder compaction and pressure cycling”, Journal on Powder Technology, Vol.114, 2001, pp.112-117.
  16. H.A. Kuhn, C.L. Downey. Deformation characteristics and plasticity theory of sintered powder materials J]. International Journal of Powder Metallurgy, Vol. 7(1971), p. 15-25.
  17. R.J. Green. A plasticity theory for porous solids J]. International Journals of Mechanical Sciences., Vol. 14 (1972), p. 215-224
  18. M. Oyane, S. Shima. Theory of plasticity for porous metals J]. Bulletin of the JSME, Vol. 16(1973), p. 1254-1262
  19. D.V. Tran, R.W. Lewis, D.T. Gethin, et al. Numerical modeling of Powder compaction processes: displacement based finite element Method, Journal on Powder Metallurgy, Vol. 36 (1993), p. 257-263
  20. R.W. Lewis, A.R. Khoei. A plasticity model for metal powder forming Processes J]. International Journal of Plasticity, Vol. 17 (2001), p. 1695-1692
  21. W. Li, S. J. Park, P. Suri, A. Antonyraj, and R. M. German, "Investigation on die wear behaviour during compaction of aluminium matrix composite powders," Powder Metallurgy, vol. 54, pp. 202-208, 2011.
  22. H. A. Al-Qureshi, M. R. F. Soares, D. Hotza, M. C. Alves, and A. N. Klein, "Analyses of the fundamental parameters of cold die compaction of powder metallurgy," Journal of Materials Processing Tech, vol. 199, pp. 417-24, 2008.
  23. S. S. M. Nor, M. M. Rahman, F. Tarlochan, B. Shahida, and A. K. Ariffin, "The effect of lubrication in reducing net friction in warm powder compaction process," Journal of Materials Processing Technology, vol. 207, pp. 118-124, 2008.
  24. G. Beck, S. Selig, D. A. Doman, and K. Plucknett, "Densitometry analysis to determine density distribution in green compacts," presented at the International Conference on Powder Metallurgy and Particulate Materials, San Francisco, 2011.
  25. A. Molinari, E. Santuliana, I. Cristofolini, A. Rao, S. Libardi, and P. Marconi, "Surface modifications induced by shot peening and their effect on the plane bending fatigue strength of a Cr-Mo steel produced by powder metallurgy," Materials Science & amp; Engineering: A (Structural Materials: Properties, Microstructure and Processing), vol. 528, pp. 2904-11, 2011.
  26. G. Sethi, N. S. Myers, and R. M. German, "An overview of dynamic compaction in powder metallurgy," International Materials Reviews, vol. 53, pp. 219-34, 2008.
  27. J. Z. Wang, X. H. Qu, H. Q. Yin, M. J. Yi, and X. J. Yuan, "High velocity compaction of ferrous powder," Powder technology, vol. 192, pp. 131-136, 2009.
  28. J. C. Cunningham, I. C. Sinka, and A. Zavaliangos, "Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction," Journal of Pharmaceutical Sciences, vol. 93, pp. 2022-2039, 2004.
  29. I. Aydin, B. J. Briscoe, and N. Ozkan, "Modeling of powder compaction: A review," MRS Bulletin, vol. 22, pp. 45-51, 1997.
  30. I. C. Sinka, "Modelling powder compaction," in KONA, Leicester, UK. 2007.
  31. L. Federzoni, H. Riedel, O. Coube, M. Oldenburg, H. A. Haggblad, D. T. Gethin, P. Mosbah, J. Virta, H. Martikainen, and A. Frachon, "State-of-the-art review - comparison of computer-models representing powder compaction process," Powder Metallurgy, vol. 42, pp. 301-311, 1999.
  32. J. A. Calero, "PM modelling: Overview and industry standpoint," Powder Metallurgy, vol. 49, pp. 10-12, 2006.

Publication Details

Published in : Volume 2 | Issue 1 | January-February 2016
Date of Publication : 2016-02-25
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 46-51
Manuscript Number : IJSRSET16213
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Partha A. P, Dr. B. M. Rajaprakash, " Numerical Simulation of Double Action Powder Compaction Process , International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 2, Issue 1, pp.46-51, January-February-2016.
Journal URL :

Article Preview