IJSRSET calls volunteers interested to contribute towards the scientific development in the field of Science, Engineering and Technology

Home > IJSRSET1622276                                                     

Restoration of Speckled SAR Images


N. Mohan Raju, P.Navya, N.Vyshnavi, R.Dharma Teja
  • Abstract
  • Authors
  • Keywords
  • References
  • Details
Many coherent imaging modalities such as synthetic aperture radar suffer from a multiplicative noise, commonly referred to as speckle, which often makes the interpretation of data difficult. An effective strategy for speckle reduction is to use a dictionary that can sparsely represent the features in the speckled image. However, such approaches fail to capture important salient features such as texture. In this paper, we present a speckle reduction algorithm that handles this issue by formulating the restoration problem so that the structure and texture components can be separately estimated with different dictionaries. To solve this formulation, an iterative algorithm based on surrogate functions is proposed. Experiments indicate the proposed method performs favourably compared to state-of-the-art speckle reduction methods.

N. Mohan Raju, P.Navya, N.Vyshnavi, R.Dharma Teja

Image Restoration, Multiplicative Noise Speckle, Synthetic Aperture Radar

  1. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Amer., vol. 66, no. 11, pp. 1145–1150, Nov. 1976.
  2. C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images. Norwood, MA, USA: Artech House, 1998.
  3. M. Amirmazlaghani and H. Amindavar, “Two novel Bayesian multiscale approaches for speckle suppression in SAR images,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2980–2993, Jul. 2010.
  4. G. Moser and S. B. Serpico, “Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2972–2982, Oct. 2006.
  5. F. Argenti, T. Bianchi, A. Lapini, and L. Alparone, “Fast MAP despeckling based on Laplacian-Gaussian modeling of wavelet coefficients,” IEEE Geosci. Remote Sens. Lett., vol. 9, no. 1, pp. 13–17, Jan. 2012.
  6. D. Gleich and M. Datcu, “Wavelet-based despeckling of SAR images using Gauss–Markov random fields,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 4127–4143, Dec. 2007.
  7. H.-C. Li, W. Hong, Y.-R. Wu, and P.-Z. Fan, “An efficient and flexible statistical model based on generalized gamma distribution for amplitude SAR images,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2711–2722, Jun. 2010.
  8. J.-S. Lee, “Digital image enhancement and noise filtering by use of local statistics,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-2, no. 2, pp. 165–168, Mar. 1980.

Publication Details

Published in : Volume 2 | Issue 2 | March-April - 2016
Date of Publication Print ISSN Online ISSN
2016-04-30 2395-1990 2394-4099
Page(s) Manuscript Number   Publisher
812-819 IJSRSET1622276   Technoscience Academy

Cite This Article

N. Mohan Raju, P.Navya, N.Vyshnavi, R.Dharma Teja, "Restoration of Speckled SAR Images", International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 2, Issue 2, pp.812-819, March-April-2016.
URL : http://ijsrset.com/IJSRSET1622276.php