IJSRSET calls volunteers interested to contribute towards the scientific development in the field of Science, Engineering and Technology

Home > IJSRSET162287                                                     

Implementation of Broad band and Zero Distortion CMOS Current Driver Circuit For Bio-medical Applications


S. MD. Imran Ali, Syed Noorullah, P. Anusha, U Gayathri
  • Abstract
  • Authors
  • Keywords
  • References
  • Details
Multi frequency Electrical Bio-impedance has been widely used as noninvasive technique for characterizing tissue. Most systems use wide band current sources for injecting current and instrumentation amplifiers for measuring resultant potential difference. Tissue electrical properties exhibit frequency characteristics over a broad bandwidth (typically 100Hz to 100MHz).Such applications require wide band accurate ac current drivers with low distortion and high output impedance. An integrated current driver is presented that fulfils the requirement of maximum output current of 888╬╝Ap-p, and at 100MHz the measured total harmonic distortion is below 0.01%.For accurate setting of output current amplitude into load current driver uses negative feedback. Active electrodes applications makes use of current driver circuit.

S. MD. Imran Ali, Syed Noorullah, P. Anusha, U Gayathri

Active electrodes, Bio-impedance, current driver, low distortion, Tissue impedance

  1. R. Bayford and A. Tizzard, “Bioimpedance imaging: An overview of potential clinical applications,” Analyst, vol. 137, no. 20, pp. 4635–4643, Oct. 2012.
  2. R. J. Halter, A. Hartov, J. A. Heaney, K. D. Paulsen, and A. R. Schned ,“Electrical impedance spectroscopy of the human prostate,” IEEE Trans.Biomed. Eng., vol. 54, no. 7, pp. 1321–1327, Jul. 2007.
  3. S. Abdul, B. H. Brown, P. Milnes, and J. A. Tidy, “The use of electrical impedance spectroscopy in the detection of cervical intraepithelial neoplasia,” Int. J. Gynecol. Cancer, vol. 16, no. 5, pp. 1823–1832,Sep./Oct. 2006.
  4. R. Pallás- Areny and J. G. Webster, Analog Signal Processing.New York, NY, USA: Wiley, 1999.
  5. A. S. Tucker, R. M. Fox, and R. J. Sadleir, “Biocompatible, high precision,wideband, improved Howland current source with lead-lag compensation,”IEEE Trans. Biomed, Circuits Syst., vol. 7, no. 1, pp. 63–70, Feb. 2013.
  6. Y. Mohomadou et al., “Performance evaluation of wideband bioimpedance spectroscopy using constant voltage source and constant current source,” Meas. Sci. Technol., vol. 23, no. 10, Oct. 2012,Art. ID. 105703.
  7. R. J. Halter, A. Hartov, and K. D. Paulsen, “A broadband high-frequency electrical impedance tomography system for breast imaging,” IEEE Trans.Biomed. Eng., vol. 55, no. 2, pp. 650–659, Feb. 2008.
  8. L. Yan et al., “A 3.9 mW 25-electrode reconfigured sensor for wearable cardiac monitoring system,” IEEE J. Solid State Circuits, vol. 46, no. 1,pp. 353–364, Jan. 2011.
  9. S. Hoo et al., “A 4.9 mΩ-sensitivity mobile electrical impedance tomography IC for early breast-cancer detection system,” in Proc. IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, USA, 2014, pp. 316–317.
  10. H. Hong, M. Rahal, A. Demosthenous, and R. H. Bayford, “Comparison of a new integrated current source with the modified Howland circuitfor EIT applications,” Physiol. Meas., vol. 30, no. 10, pp. 999–1007,Oct. 2009.
  11. L.Constantinou, I. F. Triantis, R. Bayford, and A. Demosthenous, “Highpower CMOS current driver with accurate transconductance for electricalimpedance tomography,” IEEE Trans. Biomed. Circuits Syst., vol. 8,no. 4, pp. 575–583, Aug. 2014.
  12. F. Krummenacher and N. Joehl, “A 4-MHz CMOS continuous-time filterwith on-chip automatic tuning,” IEEE J. Solid-State Circuits, vol. 23,no. 3, pp. 750–758, Jun. 1988.
  13. J. Wtorek, “Relations between components of impedance cardiogram analyzed by means of finite element model and sensitivity theorem,” Ann. Biomed. Eng., vol. 28, no. 11, pp. 1352–1361, Nov./Dec. 2000.

Publication Details

Published in : Volume 2 | Issue 2 | March-April - 2016
Date of Publication Print ISSN Online ISSN
2016-03-30 2395-1990 2394-4099
Page(s) Manuscript Number   Publisher
278-282 IJSRSET162287   Technoscience Academy

Cite This Article

S. MD. Imran Ali, Syed Noorullah, P. Anusha, U Gayathri, "Implementation of Broad band and Zero Distortion CMOS Current Driver Circuit For Bio-medical Applications", International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 2, Issue 2, pp.278-282, March-April-2016.
URL : http://ijsrset.com/IJSRSET162287.php