A Research on Prediction of Missing Sensor Data Using Association Rule

Authors(2) :-Hitarth Chauhan, Prof. Bakul Panchal

Missing values is major problem in sensor network. Currently we have many existing approach to predict missing values in stream of data. But for pre fetched existing data we canít use such techniques. So while querying in such data will lead to wrong results. So in this paper we will try to predict such missing data in existing sensor data using association rule mining techniques.

Authors and Affiliations

Hitarth Chauhan
Information Technology, L. D. Engineering College, Ahmedabad, Gujarat, India
Prof. Bakul Panchal
Information Technology, L. D. Engineering College, Ahmedabad, Gujarat, India

Window Association Rule Mining, K-nearest Neighbour Estimation, WSN, Data Reduction Mechanism, Data Mining, Sensor Data

  1. Sneha Arjun Dhargalkar, A.D. Bapat “Determining Missing Values in Dimension Incomplete Databases using Spatial-Temporal Correlation Techniques”, In 2014, IEEE.
  2. Le Gruenwald, Hamed Chok, Mazen Aboukhamis, “Using Data Mining to Estimate Missing Sensor Data” In 2007 IEEE.
  3. Mihail Halatchev Le Gruenwald, “Estimating Missing Values in Related Sensor Data Streams” ADVANCES IN DATA MANAGEMENT 2005
  4. Anjan Das, “An Enhanced Data Reduction Mechanism to Gather Data for Mining Sensor Association Rules” In 2011 IEEE
  5. ”Tutorials point”,may 2014, http://tutorialspoint.com/
  6. https://www.techopedia.com/definition/30306/association-rule-mining 
  7. https://en.wikipedia.org/wiki/Association_rule_learning.

Publication Details

Published in : Volume 2 | Issue 3 | May-June 2016
Date of Publication : 2016-06-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 118-122
Manuscript Number : IJSRSET162359
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Hitarth Chauhan, Prof. Bakul Panchal, " A Research on Prediction of Missing Sensor Data Using Association Rule, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 2, Issue 3, pp.118-122, May-June-2016.
Journal URL : http://ijsrset.com/IJSRSET162359

Article Preview

Follow Us

Contact Us