IJSRSET calls volunteers interested to contribute towards the scientific development in the field of Science, Engineering and Technology

Home > IJSRSET16257                                                     


An Improved Association Rule Mining with Frquent Itemset Relationship Technique

Authors(2):

Prof.Neeraj Shukla, Arpita Sen
  • Abstract
  • Authors
  • Keywords
  • References
  • Details
Construction also, improvement of classifier that work with more precision and perform productively for vast database is one of the key errand of information mining methods [l7] [18]. Besides preparing dataset over and over produces huge measure of principles. It's exceptionally difficult to store, recover, prune, and sort an enormous number of standards capably before applying to a classifier [1]. In such circumstance FP is the best decision yet issue with this methodology is that it produces repetitive FP Tree. A Frequent example tree (FP-tree) is a sort of prefix tree [3] that permits the identification of repetitive (continuous) thing set restrictive of the competitor thing set era [14]. It is expected to recover the blemish of existing mining strategies. FP-Trees seeks after the gap and overcomes strategy. In this paper we have embrace the same thought of creator [17] to manage vast database. For this we have incorporated a positive and negative tenet mining idea with regular example (FP) of characterization. Our technique performs well and creates special tenets without uncertainty.

Prof.Neeraj Shukla, Arpita Sen

Association, FP, FP-Tree, Nagtive, Positive

  1. Agrawal R,Imielinski T,Swami A, “Mining Association Rules between Sets of Items in Large Databases, ”In:Proc of the ACM SIGMOD International conference on Management of Data,Washington DC,1993,pp,207-216.
  2. QI Zhenyu, XU Jing, GONG Dawei and TIAN He “Traversing Model Design Based on Strong-association Rule for Web Application Vulnerability Detection”, IEEE, International Conference on Computer Engineering and Technology, 2009.
  3. B.M.Rezbaul Islam and Tae-Sun Chung “An Improved Frequent Pattern Tree Based Association Rule Mining Technique”, IEEE, International Conference on Information Science and Applications (ICISA), 2011
  4. LUO XianWen and WANG WeiQing “Improved Algorithms Research for Association Rule Based on Matrix”, IEEE, International Conference on Intelligent Computing and Cognitive Informatics, 2010.
  5. R Srikant, Qouc Vu and R Agrawal “Mining Association Rules with Item Constrains”. IBM Research Centre, San Jose, CA 95120, USA.
  6. R Agrawal and R Srikant “Fast Algorithm for Mining Association Rules”. Proceedings of VLDB conference pp 487 – 449, Santigo, Chile, 1994.
  7. Han and M. Kamber.Data Mining: Concepts and Techniques. Morgan Kaufman, San Francisco, CA, 2001.
  8. Ashok Savasere, E. Omiecinski and ShamkantNavathe“An Efficient Algorithm for Mining Association Rules in Large Databases”, Proceedings of the 21st VLDB conference Zurich, Swizerland, 1995.
  9. Arun K Pujai “Data Mining techniques”, UniversityPress (India) Pvt. Ltd., 2001.
  10. S. Park, M.-S. Chen and P. S. Yu, “An effective Hash-Based Algorithm for Mining Association Rules”, Proceedings of the ACM SIGMOD, San Jose, CA, May1995, pp. 175-186.
  11. Brin, R. Motwani, J. D. Ullman and S. Tsur, “Dynamic Item set Counting and Implication Rules for Market Basket Data”, Proceedings of the ACM SIGMOD, Tucson, AZ, May 1997, pp. 255-264.
  12. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate Generation”, Proceedings of the ACM SIGMOD, Dallas, TX, May 2000, pp. 1-12.
  13. Qin Ding and gnanasekaran Sundaraj “Association rule mining from XML data”, Proceedings of the conference on data mining.DMIN’06.
  14. Silverstein, S. Brin, and R. Motwani, “Beyond Market Baskets: Generalizing Association Rules to Dependence Rules,” Data Mining and Knowledge Discovery, 2(1), 1998, pp 39–68.
  15. Yanguang Shen, Jie Liu and Jing Shen “The Further Development of Weka Base on Positive and Negative Association Rules”, IEEE, International Conference on Intelligent Computation Technology and Automation (ICICTA), 2010.
  16. Yanguang Shen,Jie Liu,Fangping Li.Application Research on Positive and Negative Association Rules Oriented Software Defects,2009 International Conference on Computational Intelligence and Software Engineering(CISE 2009)[C].Wuhan,China,December 11-13,2009.
  17. LuoJunwei and Luo Huimin “Algorithm for Classification Based  on Positive and  Negative  Class Association  Rules”, 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), 2010.
  18. Wenmin Li, Jiawei Han and Jian Pei, "CMAR: Accurate and Efficient Classification  Based  on  Multiple  Class- Association  Rules," Proceedings  of  the  2001  IEEE  International  Conference  on  Data Mining, IEEE Press, Dec. 2001,  123-131.

Publication Details

Published in : Volume 2 | Issue 5 | September-October - 2016
Date of Publication Print ISSN Online ISSN
2016-10-30 2395-1990 2394-4099
Page(s) Manuscript Number   Publisher
46-52 IJSRSET16257   Technoscience Academy

Cite This Article

Prof.Neeraj Shukla, Arpita Sen, "An Improved Association Rule Mining with Frquent Itemset Relationship Technique", International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 2, Issue 5, pp.46-52, September-October-2016.
URL : http://ijsrset.com/IJSRSET16257.php

IJSRSET Xplore

Subscribe

Conferences

National Conference on Advances in Mechanical Engineering 2017(NCAME 2017)

National Conference on Emerging Trends in Civil Engineering 2017( NCETCE 2017)