Structure-Function Analysis of  Toxin-like Protein of Haliclona molitba  Associated with Symbiotic Bacteria from Indonesian Islands

Authors

  • Vivitri D. Prasasty  Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Indonesia
  • Ritchie Rahardja  Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Indonesia
  • Rory A. Hutagalung  Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Indonesia

Keywords:

Toxin-Like Protein, Haliclona Molitba, Hemolysis, Hemagglutination, Symbiotic Bacteria

Abstract

Tropical marine sponge, Haliclona molitba is collected from Indonesian archipelago and investigated for toxin-like protein activities. The aim of this research is to determine the structure-function relationships of the toxin-like protein, especially for hemolytic and hem agglutination activities which have wide range potentials as anticancer, antitumor, and antimicrobial, from two distinguished type of sponges: cultured (A03k) and uncultured (A03) Haliclona molitba. The crude toxin-like proteins were extracted from A03k and A03 at concentration 0.26 mg/mL and 0.23 mg/mL in aqueous extracts, respectively. On SDS-PAGE, the crude protein yielded five well-defined bands around 17, 24, 36, 96, and 120 kDa from A03 and four well-defined bands around 17, 37, 44 and 96 kDa from A03k. Hemolytic and hemagglunation assays were conducted by utilizing 8 weeks old of male Sprague Dawley rat erythrocyte. The results showed that hemolytic activity was found on protein extracted from A03k while hemagglutinating activities were not found in both cultured (A03k) and unculterd (A03) of Haliclona molitba.  Symbiotic bacteria associated with Haliclona molitba are predicted as Enterobacter sp. This finding revealed that the marine sponge is a potential source of novel bioactive proteins.

References

  1. A. Hutagalung, Victor, M. Karjadidjaja, V. D. Prasasty, and N. Mulyono. 2014. Extraction and characterization of bioactive compounds from cultured and natural sponge, Haliclona molitba and Stylotella aurantium origin of Indonesia. International Journal of Bioscience, Biochemistry and Bioinformatics. 4(1): 14-18.
  2. L. Thakur and W. E. G. Muller. 2004. Biotechnological potential of marine sponges. Curr. Sci. 86(11): 1506-1512.
  3. Higa, J. Tanaka, A. Kitamura, T. Koyama, M. Takahashi, T. Uchida. 1994. Bioactive compound from marine sponges. Pure Appl. Chem. 66(10): 2227-2230.
  4. Boobathy, T. T. A. Kumar, K. Kathiresan. 2009. Isolation of symbiotic bacteria and bioactive proteins from the marine sponge, Callyspongia diffusa. Indian J. Biotechnol. 8:275-277.
  5. Duckworth and C. Battershill. 2003. Sponge aquaculture for the production of biologically active metabolites: the influence of farming protocols and environment. Aquac. 221: 311-329.
  6. Sepcic, S. Kauferstein, D. Mebs, and T. Turk. 2010. Biological activities of aqueous and organic extracts from tropical marine sponges. Mar. Drugs. 8(5): 1550-1566.
  7. M. D. Swantara, A. Supriyono, and M. Trinoviani. 2007. Isolasi dan identifikasi senyawa toksik pada spons dari perairan Gili Sulat-Lombok. J. Kimia. 1(1):67-79.
  8. Koopmans, D. Martens, and R. H. Wijffels. 2009. Towards commercial production of sponge medicines. Marine Drugs. 7: 787–802.
  9. M. Walker. 2002. The Protein Protocols. 2nd edition. New Jersey: Humana Pr.
  10. Prahalathan, S. Bragadeeswaran, R. Sasikala, U. Kanagaraj, and P. Kumaravel. 2009. Antimicrobial and hemolytic activities of marine sponge- Halichondria panacea. J. Herbal Med. Toxicol. 3(2): 45-48.
  11. Mangel, J. M. Leitao, R. Batel, H. Zimmermann, W. E. G. Muller, H. C. Schroder. 1992. Purification and characterization of a pore-forming protein from the marine sponge Tethya lyncurium. Eur. J. Biochem. 210:.499-507.
  12. Malovrh, K. Sepcic, T. Turk, P. Macek P. 1999. Characterization of hemolytic activity of 3-alkylpyridinium polymers from the marine sponge Reniera sarai. Comparative Biochem. Physiol. 124: 221-226.
  13. M. A. Kawsar, S. M. A. Mamun, M. S. Rahman, H. Yasumitsu, and Y. Ozeki. 2010. In vitro antibacterial and antifungal effects of a 30 kDa D-galactoside-spesific lectin from the demosponge, Halichondria okadai. Int. J. Biol. Life Sci. 6(1): 31-37.
  14. E. L. Corry, G. D. W. Curtis, and R. M. Baird. 2003. Handbook of Culture Media for Food Microbiology: progress in industrial microbiology. Vol. 37. Amsterdam: Elsevier Science.
  15. S. Horvath, and M. E. Ropp. 1974. Mechanism of action of eosin-methylene blue agar in the differentiation of Escherichia coli and Enterobacter aerogenes. Int. J. Syst. Bacteriol. 24(2): 221-224.
  16. K. Lee, J. H. Lee, and H. K. Lee. 2001. Microbial symbiosis in marine sponges. J. Microbiol 39(4): 254-264.
  17. M. J. Page, P. T. Northcote, V. L. Webb, S. Mackey, and S. J. Handley. 2005. Aquaculture trials for the production of biologically active metabolites in the New Zealand sponge Mycalehentscheli (Demospongiae:Poecilosclerida). Aquac. 250: 256-269.

Downloads

Published

2017-02-28

Issue

Section

Research Articles

How to Cite

[1]
Vivitri D. Prasasty, Ritchie Rahardja, Rory A. Hutagalung, " Structure-Function Analysis of  Toxin-like Protein of Haliclona molitba  Associated with Symbiotic Bacteria from Indonesian Islands, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 3, Issue 1, pp.01-05, January-February-2017.