IJSRSET calls volunteers interested to contribute towards the scientific development in the field of Science, Engineering and Technology

Home > IJSRSET162699                                                     

Efficiency and Thermal Analysis of a Salinity Gradient Solar Pond


A. Renuka Prasad
  • Abstract
  • Authors
  • Keywords
  • References
  • Details
In the view of current requirements of power generation and the increased interest on renewable energy sources, many options are available for generation of clean power. Solar power generation would be one of the best options in this context. The solar pond uses the principle of conversion of solar energy into heat energy, and also has the capability of storing this energy for certain period of time. The solar ponds could be best option for the regions with high solar radiation throughout the day, and also has free land availability. The paper depicts the significance of solar pond for conversion of solar energy into heat energy with a sight towards the parameters like thermal efficiency, working conditions and cost of construction. The simulation of solar pond system has been carried out for understanding the trends of the thermal efficiencies with respect to time.

A. Renuka Prasad

Energy Sources, Solar Energy, Heat Energy, Upper Convective Zone, Thermal Analysis, UCZ, NCZ LCZ, SLEACH, RCD, RMCM, CKM, KDD

  1. Abishek and G. Varun, 2013, “A Technical note on Fabrication and Thermal performance studies of a solar pond model”, Journal of Renewable energy, p.1-5.
  2. Giostri, M.Binotti, P.Silva, E.Machhi and G.Manzolini, 2013, “Comparison of Two Linear Collectors in Solar Thermal Plants: Parabolic Trough Versus Fresnel” ASME J Sol. Energy Eng., 135, p.0110011.
  3. Hui Hong, Hongguang Jin, Jun Sui, Jun Ji, 2008, “Mechanism of upgrading Low-Grade Solar Thermal Energy and Experimental Validation” ASME J Sol. Energy Eng.,130,p.0210141.
  4. ChristophTrinkl,WilfriedZoner,Vic Hanby,2009, “Simulation Study on a Domestic Solar/Heat Pump Heating System Incorporating Latent and Stratified Thermal Storage” ASME J Sol. Energy Eng.,131,p.0410081.
  5. SP Sukhatme “Text Book of Solar Energy Engineering” McGraw-Hill; 1978.p.xii.
  6. Rajamohan Ganesan and Chua Han Bing, “Theoretical Analysis of Closed Rankine Cycle Solar Pond Power Generator” Modern Applied science, Vol.2, No.2, March 2008.
  7. R. Hull, K.V. Liu, W.T. Sha, J. Kamal, and C.E. Nielsen, Dependence of ground heat loss upon solar pond size and perimeter insulation, Solar Energy, 33(4), 1984, 25-33.
  8. Fisher, J. Weinberg, and B. Doron, Integration of solar pond with water desalination, Renewable energy systems and Desalination, 2(3), 1988, 110-118.
  9. Srinivasan, Solar Pond Technology, Sadhana, 18(5), 1993, 39-35.
  10. A.,Johnson.P., Nguyen.T., Mochiziki.M., Mashiko.M., Sauciuc.I., Kusaba.S., and H.Suzuki. (2001). Formulation and analysis of the heat pipe turbine for production of power from renewable sources, Journal of appliedthermal engineering, Vol 21, PP 1551-1563, UK.
  11. Deborah A. Sunter and Van P. Carey, 2010, “A Thermodynamic similarity frame work for assessment of working fluids for solar Rankine power generation” journal of Solar Energy Engineering, Vol.132, pp 0410051-8.
  12. D.H. (1983). The Exergy of the Ocean Thermal Resource and Analysis of Second law Efficiencies of Idealized Ocean Thermal Energy Conversion Power Cycles, Pergamon Press Ltd, Energy, Vol. 12, No.12, PP 927-946.
  13. A. Duffle and W. A. Backman, Solar Engineering of Thermal Processes,Wiley, New York, NY, USA, 1974.
  14. P.Garg and J. Prakash, Solar Energy Fundamentals and Applications, McGraw-Hill, NewYork, NY,USA, 2006.
  15. R. R. Murthy and K. P. Pandey, Solar Ponds: A Perspective from Indian Agriculture, Department of Agricultural and FoodEngineering, Indian Institute of Technology, Kharagpur, India, 2000.
  16. Velmurugana V and Srithar K 2008 Renew. Sust. Energ.Rev. 12 2253.
  17. R. Hull and C. E. Nielsen, “Steady-state analysis of the rising solar pond,” Solar Energy, vol. 42, no. 5, pp. 365–377, 1989.
  18. Arumugam, S., 1997, ‘Design Construction, Performance and Heat Extraction Studies of a Full Scale Non- Convecting Solar Pond,’ PhD Thesis, Gandhigram University, India.
  19. Almanza R., Munoz F., Segura G. and Martinez A. (1987) Study of CH-type clays as liners for solar pond. In Proceedings of International Conference on Solar Ponds,Cuernavaca, Mexico.
  20. K.,Ibrahim.D and Marc.A.R. (2006). Performance investigation of a solar pond, Journal of applied thermal engineering, Elsevier Ltd, Vol 26, PP 727-735, UK.
  21. M. Ould Dah, M. Ouni, A. Guizani, and A. Belghith, “The influence of the heat extraction mode on the performance and stability of a mini solar pond,” Applied Energy, vol. 87, no. 10, pp. 3005–3010, 2010.
  22. Motiani M. D., Kumar A., Kishore V. V. N. and Rao K. S. (1993) One year performance of the 6000 m solar pond at Bhuj. In Proceedings of 3rd International Conference on Progress in Solar Ponds, p. 38, El Paso, USA.
  23. Tabor, “Solar ponds,” Solar Energy, vol. 27, no. 3, pp. 181–194, 1981.
  24. C. Sharma andA. Tiwari, “Performance enhancement of shallow solar pond by system Modification,” International Journal on Emerging Technologies-, vol. 1, no. 1, pp. 92–96, 2010.
  25. P.Garg and J. Prakash, Solar Energy Fundamentals and Applications, McGraw-Hill, NewYork, NY,USA, 2006.
  26. Ozek, M. Kalkilik, and N. C. bezir, “A solar pond, odel with insulated and glass covered,” Bulgarian Journal of Physics, vol. 27, no. 4, pp. 67–70, 2000.
  27. Karakilcik and I. Dincer, “Exergetic performance analysis of a solar pond,” International Journal ofThermal Sciences, vol. 47, no. 1, pp. 93–102, 2008.
  28. Su´arez, S. W. Tyler, and A. E. Childress, “A fully coupled,transient double-diffusive convective model for salt-gradientsolar ponds,” International Journal of Heat and Mass Transfer,vol. 53, no. 9-10, pp. 1718–1730, 2010.
  29. Jaefarzadeh, M. R. and Akbarzadeh, A., 2002, ‘Towards the Design of Low Maintenance Salinity Gradient Solar Ponds’ Solar Energy, vol 73, no.5, pp. 375-384.
  30. Boegli, W. J., Dahl, M. M., and Remmers, H. E., 1982, ‘Preliminary study of solar ponds for salinity control in the Colorado River Basin’, Bureau of Reclamation Report RECERC 82-19.
  31. Kumar, A. and Kishore, V., 1999 ‘Construction and Operational Experience of a 6000 m2 solar pond at Kutch, India’, Solar Energy, vol. 65, no. 4, pp. 237- 249.
  32. R. Hull, “Methods and means of preventing heat convection in a solar pond,” US Patent [19], 1980.
  33. A. El-Sebaii, “Thermal performance of a shallow solar-pond integrated with a baffle plate,” Applied Energy, vol. 81, no. 1, pp. 33–53, 2005.
  34. Bezir C N 2002 PhD Thesis (University of SuleymanDemirel, Turkey).
  35. P. Sukhatme, Solar Energy, TataMcGraw-Hill, New York, NY, USA, 3rd edition, 2006.
  36. C. Neville, Solar Energy Conversion, Elsevier, New York, NY, USA, 1995.
  37. Newell, T. A. ,Cowie, R. G., Upper, J. M., Smith, M. K. and Cler, G. L., 1990, ‘Construction and operation activities at the University of Illinois salt gradient solar pond’ Solar Energy, vol. 45, no. 4, pp. 231- 239.
  38. Hillel Rubin and Giorgio A. Bemporad, 1989, “The advanced solar pond (asp) basic theoreticalaspects”Solar Energy 43. No. I, pp. 35-44.
  39. Al-Jubouri,A.S. and Ziyada,F.M.(1997).Estimation of Solar Radiation of a Solar Pond in Baghdad.Engineering and Technology,Vol.16(800-809).
  40. Wright,J.D.(1982).Selection of a Working Fluid for an Organic Rankine Cycle Coupled to a Salt-Gradient Solar Pond by Direct-Contact Heat Exchanger.J. Solar Energy Engineering, Vol.104 (286-292).
  41. Abishek and G. Varun, 2013, “A Technical note on Fabrication and Thermal performance studies of a solar pond model”, Journal of Renewable energy, p.1-5.

Publication Details

Published in : Volume 2 | Issue 4 | July-August - 2016
Date of Publication Print ISSN Online ISSN
2016-08-31 2395-1990 2394-4099
Page(s) Manuscript Number   Publisher
865-871 IJSRSET162699   Technoscience Academy

Cite This Article

A. Renuka Prasad , "Efficiency and Thermal Analysis of a Salinity Gradient Solar Pond ", International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 2, Issue 4, pp.865-871, July-August-2016.
URL : http://ijsrset.com/IJSRSET162699.php




National Conference on Advances in Mechanical Engineering 2017(NCAME 2017)

National Conference on Emerging Trends in Civil Engineering 2017( NCETCE 2017)