Comparison of Estimated Planetary Boundary Layer Height over North Africa Using Three Different Methods

Authors(2) :-Mahmoud F. Abdel-Sattar, Fathy M. El-Hussainy

Planetary boundary layer (PBL) height is an essential parameter in atmospheric modeling due to its ability to impact on energy, water vapor, and pollution in the atmosphere. Estimation of PBL height is not easily available and often come from radiosonde observations at 0000GMT and 1200 GMT. In this paper PBL height is computed by three methods at afternoon over Egypt and Sahara Desert. The first method is based on bulk Richardson number, while the second method depends on the existence of the Inversion Layer. The third method is based on a simplified turbulent kinetic energy equation and accounts for the temperature difference across the top of the mixed layer. The results of PBL height by the three methods are compared with those corresponding of The National Centers for Environmental Prediction (NCEP) and the ERA-Interim reanalysis from ECMWF. The comparisons illustrate that the estimated PBL height are differ by some hundreds of meters. The simulations with the first and third methods give much less PBL heights than the second method. Finally, the variation of PBL heights estimates are discussed for each method.

Authors and Affiliations

Mahmoud F. Abdel-Sattar
Department of Astronomy and Meteorology, Al- Azhar University, Cairo, Egypt
Fathy M. El-Hussainy
Department of Astronomy and Meteorology, Al- Azhar University, Cairo, Egypt

Planetary Boundary Layer height, Potential Temperature, WRF Model, Weather Forecast

  1. Ao, C. O., D. E. Waliser, S. K. Chan, J.-L. Li, B. Tian, F. Xie, and A. J. Mannucci, 2012: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res., 117, D16 117, doi:10.1029/2012JD017598 .
  2. Berman, S., K. Jia-Yeong, and S. Trivikrama Rao, 1999: Spatial and Temporal Variation in the Mixing Depth over the Northeastern United States during the Summer of 1995, J. Appl. Meteor., 38, 1661-1673.
  3. Bradley, R. S., Keimig, F. T., and Diaz, H. F., 1993: Recent changes in the North American Arctic boundary layer in winter, J. Geophys. Res., 98, 8851–8858, doi:10.1029/93JD00311.
  4. Decker, M., Brunke, M.A., Wang, Z., Sakaguchi, K., Zeng, X., Bosilovich, M.G. 2011: Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Clim. 25, 1916–1944.
  5. Dee D.P., Uppala, S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L.,Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N. & Vitart F., 2011: The ERA-Interim reanalysis configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137: 553–597.
  6. Heffter, J. L., 1980: Transport layer depth calculations. Second Joint Conference on Applications of Air Pollution Meteorology.
  7. Holtslag, A. A. M. and Boville, B. A., 1993: Local versus nonlocal boundary-layer diffusion in a global climate model, J. Climate, 6, 1825–1842.
  8. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
  9. Seibert, P., Beyrich, F., Gryning, S. E., Joffre, S., Rasmussen, A., and Tercier, P., 2000: Review and intercomparison of operational methods for the determination of the mixing height, Atmos. Environ., 34, 1001–1027.
  10. Sykes, R. I. et al., 1996: PC-SCIPUFF Version 0.2 Technical Documentation, Titan Corporation,P. 0. BOX 2229, Princeton, NJ 08543.
  11. Sugiyama, G. and Nasstrom, J. S., 1999: Methods for Determining the Height of the Atmospheric Boundary Layer, UCRL-ID-133200, Lawrence Livermore National Laboratory Report.
  12. Vogelezang, D. H. P. and Holtslag, A. A. M., 1996: Evaluation and model impacts of alternative boundary-layer height formulations, Bound.-Lay. Meteorol., 81, 245–269, doi:10.1007/BF02430331.
  13. Wang, Q., Lenschow, D. H., Pan, L., Schillawski, R. D., Kok, G. L., Prevot, A. S. H., Laursen, K., Russell, L. M., Bandy, A. R., Thornton, D. C., and Suhre, K. , 1999: Characteristics of the marine boundary layers during two Lagrangian measurement periods: 2. Turbulence structure, J. Geophys. Res., 104, 21767–21784.

Publication Details

Published in : Volume 3 | Issue 1 | January-February 2017
Date of Publication : 2017-02-28
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 262-268
Manuscript Number : IJSRSET173166
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Mahmoud F. Abdel-Sattar, Fathy M. El-Hussainy, " Comparison of Estimated Planetary Boundary Layer Height over North Africa Using Three Different Methods, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 3, Issue 1, pp.262-268 , January-February-2017.
Journal URL :

Article Preview