Sensitivity of WRF Model Output to Planetary Boundary Layer Height Variation over North Africa

Authors(2) :-Mostafa M. Ibrahim, Mahmoud F. Abdel-Sattar

The first intention of this work was the modification of the Planetary Boundary Layer (PBL) Yonsei University scheme (YSU) in order to improve the estimation of Planetary Boundary Layer Height (PBLH) over Sahara desert during daytime. It is anticipated that the problem concerns the estimation of surface layer temperature. The surface boundary layer temperature, in the Revised YSU version (RYSU), is increased by (TSK-TT)/d when the skin temperature TSK > TT. It is found that when the parameter TT is 40o C the optimal value of the parameter d is around 3.5. Evaluation of WRF model forecast output when implemented with RYSU shows better performance for PBL atmospheric variables. The other intention of this work is to study the impact of using the WRF model implemented with RYSU scheme relative to that using YSU scheme. It is shown that the difference between the two models run is significant even far from the Sahara desert where the modification is applied. It is found that very small fast disturbances propagating out of a dipole vortex where the surface boundary layer temperature is modified excite specific locations forming local dipole vorticies. Out of these dipole vortices gravity waves propagate. Development that cause significant local variation in weather elements occur where the interaction evolve. It is found that deep convection areas are one of the possible specific locations where interaction can arises. One can argue that since very small propagating disturbances are part of our chaotic atmosphere, the side effect that resembles the Butterfly effect could be numerical rather than physical outcome.

Authors and Affiliations

Mostafa M. Ibrahim
Department of Astronomy and Meteorology, Al-Azhar University, Cairo, Egypt
Mahmoud F. Abdel-Sattar
Department of Astronomy and Meteorology, Al-Azhar University, Cairo, Egypt

PBL height, WRF Model, YSU Scheme, Weather Forecast

  1. Ao, Waliser, Chan, Li, Tian, Xie,, and Mannucci) Ao, C. O., D. E. Waliser, S. K. Chan, J.-L. Li, B. Tian, F. Xie, and A. J. Mannucci, 2012: Planetary boundary layer heights from gps radio occultation refractivity and humidity profiles. J. Geophys. Res., 117, D16 117, doi:10.1029/2012JD017598 .
  2. Banks, R. F., J. Tiana-Alsina, J. M. Baldasano, F. Rocadenbosch, A. Papayannis, S. Solomos, and C. G. Tzanis, 2016: Sensitivity of boundary-layer variables to pbl schemes in the wrf model based on surface meteorological observations, lidar, and radiosondes during the hygra-cd campaign. J. Atmospheric Research, 176-177, 185–201, doi:org/10.1016/j.atmosres. 2016.02.024.
  3. Banks, R. F., J. Tiana-Alsina, F. Rocadenbosch, and J. M. Baldasano, 2015: Performance evaluation of the boundary-layer height from lidar and the weather research and forecasting model at an urban coastal site in the north-east Iberian peninsula. Boundary-Layer Meteorol, 157, 265–292, doi:10.1007/s10546-015-0056-2.
  4. Bao, J. W., S. A. Michelson, P. O. G. Persson, I. V. Djalalova, and J. M. Wilczak, 2008: Observed and wrf-simulated low-level winds in a high-ozone episode during the central california ozone study. J. Appl. Meteorol. Climatol, 47, 2372–2394, doi:10.1175/2008jamc1822.1.
  5. Cheng, F. Y., S. C. Chin, and T. Liu, 2012: The role of boundary layer schemes in meteorological and air quality simulations of the taiwan area. Atmos. Environ., 54, 714–727, doi:10.1016/j.atmosenv.2012.01.029.
  6. Dee, D. P., and Coauthors, 2011: The era-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553–597, doi:10.1002/qj.828.
  7. Fritts, and Alexander) Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41(1), 1003, doi:10.1029/2001RG000106.
  8. Garcia-Diez, M., J. Fernndez, L. Fita, and C. Yage, 2013: Seasonal dependence of wrf model biases and sensitivity to pbl schemes over europe. Quart. J. Roy. Meteorol. Soc., 139, 501–514.
  9. Garcia-Menendez, F., Y. Hu, and M. T. Odman, 2013: Simulating smoke transport from wildland fires with a regional-scale air quality model sensitivity to uncertain wind fields. Geophys Res. Atmos., 118, 6493–6504, doi:10.1002/ jgrd.50524.
  10. Gilliam, R. C., J. Godowitch, and S. T. Rao, 2012: Improving the horizontal transport in the lower troposphere with four dimensional data assimilation. Atmos. Environ., 53, 186–201, doi:10.1016/j.atmosenv.2011.10.064.
  11. Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134(9), 2318–2341, doi:10.1175/Mwr3199.1.
  12. Ibrahim, M. M., M. Abdel-Sattar, and A.-R. M. Lasheen, 2012: Comparison among three planetary boundary layer schemes in the wrf model. Al-Azhar Bull Sci., 23, 39–49.
  13. Jin, M., and R. E. Dickinson, 2010: Land surface skin temperature climatology: benefitting from the strengths of satellite observations. Environ. Res. Lett., 5, 044 004, doi:10.1088/1748-9326/5/4/044004.
  14. Miller, M., 2002: Atmospheric waves. meteorological training course lecture series. ECMWF, pp.200.
  15. Richardson, H., S. Basu, and A. A. M. Holtslag, 2013: Improving stable boundary-layer height estimation using a stability-dependent critical bulk richardson number. Bound.-Lay. Meteorol, 148, 93–109, doi:10.1007/s10546-013-9812-3.
  16. Snyder, C., D. J. Muraki, R. Plougonven, and F. Zhang, 2007: Inertia gravity waves generated within a dipole vortex. Atmos. Sci., 64, 4417–4431, doi:10.1029/JC091iC11p12865.
  17. Sugiyama, G., and J. S. Nasstrom, 1999: Methods for determining the height of the atmospheric boundary layer. LLNL Report UCRL-ID-133200, LLNL.
  18. von Engeln, and Teixeira) von Engeln, A., and J. Teixeira, 2013: A planetary boundary layer height climatology derived from ecmwf re-analysis data. Journal of Climate, 26, 6575–6590, doi:10.1175/JCLI-D-12-00385.1.
  19. Zhang, Y., Z. Gao, D. Li, Y. Li, N. Zhang, X. Zhao, and J. Chen, 2014: On the computation of planetary boundary-layer height using the bulk richardson number method. Geosci. Model Dev., 7, 2599–2611.

Publication Details

Published in : Volume 3 | Issue 1 | January-February 2017
Date of Publication : 2017-02-28
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 269-287
Manuscript Number : IJSRSET173167
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Mostafa M. Ibrahim, Mahmoud F. Abdel-Sattar, " Sensitivity of WRF Model Output to Planetary Boundary Layer Height Variation over North Africa, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 3, Issue 1, pp.269-287 , January-February-2017. Citation Detection and Elimination     |     
Journal URL : https://ijsrset.com/IJSRSET173167

Article Preview