A Review on Different Ways of Bioethanol Production; a Renewable And Alternative Energy Source

Authors

  • Ammara Nasir  Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
  • Sikander Ali  Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
  • Sadia Sanawer  Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
  • Tahira Mohsin  Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan

Keywords:

Bioethanol, Feedstock, Fermentation, Saccharification, Lignocelluloses

Abstract

Gradual decrease in energy sources due to their increased consumption as a result of increase in world population and high environmental pollution has led to the invention of alternative renewable energy sources. Several studies are being carried out for this purpose. Different types of biofuels have been generated and among them, bioethanol is the major alternative source of energy. It posseses many special characteristics which make it unique from rest of the energy producing sources. It also has the ability to prevent the emission of certain dangerous gasses upon its burning, which are the main cause of environmental pollution such as global warming. Different types of feedstocks such as cereals, crops (sugar crops), lignocellulosic wastes and others including yeasts and algal biomasses have been studied for bioethanol production. This review gathers many different sources and methods for the production of bioethanol, techniques to enhance the production and ways to make it useful for the mankind.

References

  1. Goldemberg J, Guardabassi P. Are biofuels a feasible option? Energ Pol 2009; 37.
  2. Prasad S, Singh A, Joshi HC. Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy & Fuels 2007;  21(4): 2415–2420.
  3. Balat M. Global bio-fuel processing and production trends. Energ Explor Exploit 2007; 25(3): 195–218.
  4. Wyman CE, Hinman ND. Ethanol. Fundamentals of production from renewable feedstocks and use as a transportation fuel. Appl Biochem Biotechnol 1990; 24: 735–753.
  5. Balat M, Balat H. Recent trends in global production and utilization of bioethanol fuel. Appl Energ 2009; 86(11): 2273–2282.
  6. Licht F. World Ethanol Markets: The Outlook to 2015, Agra Europe, Tunbridge Wells, UK 2006.
  1. Takagi M, Abe S, Suzuki S, Emert GH, Yata N. A method for production of alcohol directly from cellulose using cellulose and yeast. Proceedings, Bioconv. Sympos, IIT, Delhi 1977; 551–571.
  2. Blotkamo PJ, Takaai M, Pemberton MS, Enert GS. Enzymatic hydrolysis of cellulose and simultaneous saccharification to alcohol. AI ChE Symp Ser 1978; 74: 85
  3. Amigun B, Musango J, Stafford W. Biofuels and sustainability in Africa. Renewable  Sustainable Energ. Reviews 2011; 15(2): 1360–1372.
  4. Anderson WF, Akin DE. Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 2008; 35: 355–366
  5. Shen L, Lei J,  Bi Y. Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions. J Biomed  Biotechnol 2011; Article ID 417421, 10 pages.
  6. Wilkie AC, Riedesel KJ, Owens JM. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenerg 2000;  19(2): 63–102.
  7. Goh CS, Lee KT. A visionary and conceptual macroalgae- based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development,” Renewable and Sustainable Energy Reviews 2010; 14(2): 842–848.
  8. Urano, Yamazaki NM, Ueno R. Distribution of halotolerant and/or fermentative yeasts in aquatic environments. J Tokyo Univ Fish 2001; 87: 23–30.
  9. Stanley, Fraser DS, Chambers PJ, Rogers P, Stanley GA. Generation and characterization of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2010; 37: 139-149.
  10. Karekezi S. Renewables in Africa-Meeting the energy needs of the poor. Energ Pol 2002;  30(11-12): 1059–1069.
  11. Balat M, Balat H, O¨ z C. Progress in bioethanol processing. Prog. Energ Combust Sci 2008; 34(5): 551–573.
  12. S´anchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol 2008; 99(13): 5270–5295.
  13. Morohoshi N. Chemical characterization of wood and its components. In: Hon DNS, Shiraishi, N. (eds) Wood and cellulosic chemistry. Marcel Dekker Inc, New York, USA 1991; 331–392.
  14. Kalogo Y, Habibi S, MacLean HL, Joshi SV. Environmental implications of municipal solid waste-derived ethanol. Environ Sci Technol 2007; 41: 35–41.
  15. Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S. Lignocellulose biotechnology: issues of bioconversion and enzyme production. African J of Biotechnol 2003; 2: 602–619.
  16. Sun FB, Cheng HZ. Evaluation of enzymatic hydrolysis of wheat straw pretreated by atmospheric glycerol autocatalysis. J Chem Technol Biotechnol 2007; 82: 1039–1044.
  17. Millet MA, Baker AJ, Scatter LD. Physical and chemical pretreatment for enhancing cellulose saccharification. Biotech Bioeng Symp 1976; 6: 125–153.
  18. Kilzer FJ, Broido A. Speculations on the nature of cellulose pyrolysis. Pyrodynamics 1965; 2: 151–163
  19. Vinatoru M, Toma M, Mason TJ. Ultrasonically assisted extraction of bioactive principles from plants and their constituents. In: Mason TJ (ed) Advances in sonochemistry, 5th edn  JAI Press, London 1965; 209–248
  20. McIntosh, S, Vancov T. Enhanced enzyme saccharification of sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol 2010; 101(17): 6718–6727.
  21. Martin C, Klinke HB, Thomsen AB. Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme and Microbial Technol 2007; 40(3): 426–432.
  22. Li Q, He YC, Xian M. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 2009;  100(14): 3570–3575.
  23. Arora DS, Chander MKGP. Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int Bioterior Biodegrad 2002; 50: 115–120
  24. Senthilkumar V, Gunasekaran P. Bioethanol production from cellulosic substrate: engineered bacteria and process integration challenges. J Sci and Inds Resrch 2005; 64: 845–853.
  25. Elumalia S, Thangavelu V. Simultaneous saccharification and fermentation (SSF) of pretreated sugarcane bagasse using cellulose and Saccharomyces cerevisiae-kinetics and modeling. Chem Eng Res Bull 2010; 14:29–35
  26. Lynd LR, van Zyl WH, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 2005; 16: 577–583.
  27. Kathiresan K, Saravanakumar K, Senthilraja P. Bio-ethanol production by marine yeasts isolated from coastal mangrove sediment. Int Multidiscip Res J 2011; 1: 19–24.
  28. Obara N, Ishida M, Hamada-Sato N, Urano N. Efficient bioethanol production from scrap paper shredder by a marine Saccharomyces cerevisiae derived C-19. Stud Sci Technol 2012; 1: 127–132.
  29. Khambhaty Y, Upadhyay D, Kriplani Y, Joshi N, Mody K,  Gandhi MR. Bioethanol from macroalgal biomass: utilization of marine yeast for production of the same. Bioenerg Res 2013; 6: 188–195.
  30. Saravanakumar K, Senthilraja P, Kathiresan K. Bioethanol production by mangrove-derived marine yeast Sacchromyces cerevisiae. J King Saud Univ Sci 2013; 25: 121–127.
  31. Senthilraja P, Kathiresan K, Saravanakumar K. Comparative analysis of bioethanol production by different strains of immobilized marine yeast. J Yeast Fungal Res 2011; 8: 113–116.
  32. Aarnio TH, Suihko ML, Kauppinen VS. Isolation of acetic acid tolerant baker’s yeast variants in a turbidostat. Appl Biochem. Biotechnol 1991; 27: 55-63.
  33. Shi DJ, Wang CL, Wang KM. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2008; 36: 139-147.
  34. Mobini-Dehkordi M, Nahvi I, Zarkesh-Esfahani H, Ghaedi K, Tavassoli M, Akada R. Isolation of a novel mutant strain of Saccharomyces cerevisiae by an ethyl methane sulfonate-induced mutagenesis approach as a high producer of bioethanol. J Biosci Bioeng 2008; 105: 403-408.
  35. Yoshikawa K, Tadamasa T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 2009; 9:32-44.
  36. Yang J, Baeb JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Biotechnol Bioeng 2011; 108: 1776-1787.
  37. Kim HS, Kim NR, Yang J Choi W. Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2011; 91: 1159-1172.
  38. Zheng DQ, Wu XC, Tao XL, Wang PM, Li P, Chi XQ. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour Technol 2011; 102: 3020-3027.
  39. Hirasawa, Yoshikawa TK, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 2007;  131: 34-44.
  40. Brennan L, Owende P. Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energ 2010; 14: 557–577.
  41. Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC. Aquatic phototrophs: efficient alternatives to land-based crops for bio- fuels. Curr Opin Biotechnol 2008; 19: 235–240.
  42. Harun R, Danquah M.. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 2011a; 46: 304–309.
  43. Harun R, Danquah M. Enzymatic hydrolysis of microalgae biomass for bioethanol production. Chem Eng  J 2011b; 168: 1079–1084.
  44. Candra K, Sarinah S. Study on bioethanol production using red seaweed Eucheuma cottonii from Bontang sea water.  J Coastal Dev 2011; 15: 45–50.
  45. Chen R, Yue Z, Deitz L, Liu Y, Liao W. Use of an algal hydrolysate to improve enzymatic hydrolysis of lignocellulose. Bioresour Technol 2012; 108: 149–154.
  46. Singh D, Trivedi R. Production of biofuel from algae: an economic and eco-friendly resource.  Int J Sci Res 2013; 2: 352–357.
  47. Horn, Aasen HI, Østgaard M. Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol 2000; 24: 51–57.
  48. Yoon J, Kim Y, Kim S, Ryu H, Choi J. Kim G et al. Production of polysaccharides and corresponding sugars from red seaweed. Adv Mater Res 2010; 9: 463–466.
  49. Ho S, Chen C, Lee D, Chang J. Perspectives on micro algal CO2-emission mitigation systems-a review. Biotechnol Adv  2011; 29: 189–198.
  50. Harun R, Jason WSY, Cherrington T, Danquah MK. Exploring alkaline pre-treatment of micro-algal biomass for bioethanol production. Appl Energ  2011; 88: 3464–3467.
  51. Eshaq F, Ali M, Mohd M. Spirogyra biomass a renewable source for biofuel (bioethanol) production. Int J  Eng  Sci Technol 2010; 2: 7045–7054.
  52. Ensinas, Modesto AM, Nebra S, Serra L. Reduction of irreversibility generation in sugar and ethanol production from sugarcane. Energy 2009; 34(5): 680–688.
  53. Dodi´c S, Popov S, Dodi´c J, Rankovi´c J, Zavargo Z, Mu?cibabi´c Jevti´c R. Bioethanol production from thick juice as intermediate of sugar beet processing. Biomass Bioenerg 2009; 33(5): 822–827.
  54. Eiadpum A, Limtong S, Phisalaphong M. High-tem-perature ethanol fermentation by immobilized coculture of Kluyveromyces marxianus and Saccharomyces cerevisiae. J Biosci Bioeng 2012; 114(3): 325–329.
  55. Ghosh P, Ghose TK. Bioethanol in India: Recent Past and Emerging Future. Springer Berlin, Germany 2003.
  56. Daniel, Lueschen PW, Kanne B, Hoverstad T. A comparison of sweet sorghum cultivars and maize for ethanol production.  J Prod  Agri 1991; 4(3): 377–381.
  57. Balcerek M, Pielech-Przybylska K, Patelski P. Selection of yeast strains for alcoholic fermentation of sugar beet thick juice and green syrup. Biomass Bioenerg 2011; 35(12): 4841–4848.
  58. Vu?curovi´c D, Dodi´c S, Popov S, Dodi´c J, Grahovac J. Process model and economic analysis of ethanol production from sugar beet raw juice as part of the cleaner production concept. Bioresour Technol 2012; 104: 367– 372.
  59. Ingram L, Gomez P, Lai X et al. Metabolic engineering of bacteria for ethanol production. Biotechnol  Bioeng 1998; 58( 2-3): 204–214.
  60. Laopaiboon L, Thanonke P, Jaisil P, Laopaiboon P. Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J  Microbiol Biotechnol 2007; 23(10): 1497–1501.
  61. Brethauer S, Wyman C. Review: continuous hydrolysis and fermentation for cellulosic ethanol production.  Bioresour Technol 2010; 101(13): 4862–4874.
  62. Prasad B, Mishra I. On the kinetics and effectiveness of immobilized whole-cell batch cultures.  Bioresour Technol 1995; 53(3):  269–275.
  63. Dhaliwal SS, Oberoi HS, Sandhu SK, Nanda D, Kumar D, Uppal SK. Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii. Bioresour Technol 2011; 102(10): 5968–5975.
  64. Paiva TCB, Sato S, Visconti AES, Castro LAB. Continuous alcoholic fermentation process in a tower reactor with recycling of flocculating yeast. Appl Biochem Biotechnol A 1996; 57-58: 535–541.
  65. Laopaiboon L, Nuanpeng S, Srinophakun P, Klanrit P, Laopaiboon P. Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitro-gen supplementations. Bioresour Technol 2009; 100(18): 4176–4182.
  66. Fish WW, Bruton BD, Russo VM. Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production. Biotechnol Biofuel 2009; 2(1): 1–9.

Downloads

Published

2017-06-30

Issue

Section

Research Articles

How to Cite

[1]
Ammara Nasir, Sikander Ali, Sadia Sanawer, Tahira Mohsin, " A Review on Different Ways of Bioethanol Production; a Renewable And Alternative Energy Source, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 3, Issue 3, pp.430-441, May-June-2017.