Advance in Penny-Shaped Cracks of Piezoelectricity

Authors(1) :-Yi Xiao

This paper presents an overview of Penny-shaped cracks of piezoelectric materials. Developments of Penny-shaped crack problems in piezoelectric materials are presented. Finally, a brief summary of the approaches discussed is provided and future trends in this field are identified.

Authors and Affiliations

Yi Xiao
Research School of Engineering, Australian National University, Acton, ACT 2601, Australia

Piezoelectric materials, Penny-shaped crack, piezoelectric cylinder

[1] J. Curie, P. Curie, Development par compression de l’eletricite polaire dans les cristaux hemiedres a faces inclines, Comptes Rendus Acad. Sci. Paris, 91 (1880) 294.

[2] W. Voigt, General theory of the piezo-and pyroelectric properties of crystals, Abh. Gott, 36(1) (1890).

[3] W. Cady, Piezoelectricity, vols. 1 and 2, Dover Publishers, New York, 1964.

[4] H.F. Tiersten, Linear piezoelectric plate vibrations, Springer, New York, 1969.

[5] V.Z. Parton, B.A. Kudryavtsev, Electromagnetoelasticity: piezoelectrics and electrically conductive solids, Gordon and Breach Science Publishers, New York, 1988.

[6] T. Ikeda, Fundamentals of piezoelectricity, Oxford university press, New York, 1996.

[7] N.N. Rogacheva, The theory of piezoelectric shells and plates, CRC Press, Boca Raton, 1994.

[8] Q.H. Qin, Fracture mechanics of piezoelectric materials, WIT Press, Southampton, 2001.

[9] Q.H. Qin, Green's function and boundary elements of multifield materials, Elsevier, Oxford, 2007.

[10] Q.H. Qin, Advanced mechanics of piezoelectricity, Higher Education Press and Springer, Beijing, 2013.

[11] Q.H. Qin, Mechanics of Cellular Bone Remodeling: Coupled Thermal, Electrical, and Mechanical Field Effects, CRC Press, Taylor & Francis, Boca Raton, 2013.

[12] Q.H. Qin, Q.S. Yang, Macro-micro theory on multifield coupling behaivor of hetereogenous materials, Higher Education Press and Springer, Beijing, 2008.

[13] S. Diao, Q.H. Qin, J. Dong, On branched interface cracks between two piezoelectric materials, Mechanics research communications, 23(6) (1996) 615-620.

[14] Q.H. Qin, Y.W. Mai, Crack branch in piezoelectric bimaterial system, International Journal of Engineering Science, 38(6) (2000) 673-693.

[15] Q.H. Qin, X. Zhang, Crack deflection at an interface between dissimilar piezoelectric materials, International Journal of Fracture, 102(4) (2000) 355-370.

[16] D. Fu, Z. Hou, Q.H. Qin, L. Xu, Y. Zeng, Influence of Shear Stress on Behaviors of Piezoelectric Voltages in Bone, Journal of Applied Biomechanics, 28(4) (2012) 387-393.

[17] D.H. Fu, Z.D. Hou, Q.H. Qin, Analysis of the waveforms of piezoelectric voltage of bone, Journal of Tianjin University, 39 (2006) 349-353.

[18] D.H. Fu, Z.D. Hou, Q.H. Qin, Influence of a notch on the piezoelectric voltages in bone, Engineering Mechanics, 28(1) (2011) 233-237.

[19] D.H. Fu, Z.D. Hou, Q.H. Qin, C. Lu, On the Influence of Relative Humidity on Piezoelectric Signals in Bone, Journal of Experimental Mechanics, 24(5) (2009) 473-478.

[20] Z. Hou, D. Fu, Q.H. Qin, An exponential law for stretching–relaxation properties of bone piezovoltages, International Journal of Solids and Structures, 48(3) (2011) 603-610.

[21] L. Xu, Z. Hou, D. Fu, Q.-H. Qin, Y. Wang, Stretched exponential relaxation of piezovoltages in wet bovine bone, Journal of the Mechanical Behavior of Biomedical Materials, 41 (2015) 115-123.

[22] X. He, C. Qu, Q.H. Qin, A theoretical model for surface bone remodeling under electromagnetic loads, Archive of Applied Mechanics, 78(3) (2008) 163-175.

[23] Q.H. Qin, Thermoelectroelastic solutions for internal bone remodelling under constant loads, Mechanics of electromagnetic solids, 3 (2003) 73-88.

[24] Q.H. Qin, Multi-field bone remodeling under axial and transverse loads, in: D.R. Boomington (Ed.) New research on biomaterials, Nova Science Publishers, New York, 2007, pp. 49-91.

[25] Q.H. Qin, C. Qu, J. Ye, Thermoelectroelastic solutions for surface bone remodeling under axial and transverse loads, Biomaterials, 26(33) (2005) 6798-6810.

[26] Q.H. Qin, J.Q. Ye, Thermoelectroelastic solutions for internal bone remodeling under axial and transverse loads, International Journal of Solids and Structures, 41(9) (2004) 2447-2460.

[27] C. Qu, X. He, Q.H. Qin, Bone functional remodeling under multi-field loadings, Proceedings of the 5th Australasian Congress on Applied Mechanics,  (2007) 627-632.

[28] C. Qu, Q.H. Qin, Bone remodeling under multi-field coupled loading, Zhineng Xitong Xuebao(CAAI Transactions on Intelligent Systems), 2(3) (2007) 52-58.

[29] C. Qu, Q.H. Qin, Y. Kang, A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads, Biomaterials, 27(21) (2006) 4050-4057.

[30] X. He, J.S. Wang, Q.H. Qin, Saint-Venant decay analysis of FGPM laminates and dissimilar piezoelectric laminates, Mechanics of Materials, 39(12) (2007) 1053-1065.

[31] K.Q. Hu, Y.L. Kang, Q.H. Qin, A moving crack in a rectangular magnetoelectroelastic body, Engineering Fracture Mechanics, 74(5) (2007) 751-770.

[32] K.Q. Hu, Q.H. Qin, Y.L. Kang, Anti-plane shear crack in a magnetoelectroelastic layer sandwiched between dissimilar half spaces, Engineering Fracture Mechanics, 74(7) (2007) 1139-1147.

[33] Q.H. Qin, Solving anti-plane problems of piezoelectric materials by the Trefftz finite element approach, Computational Mechanics, 31(6) (2003) 461-468.

[34] H.Y. Liu, Q.H. Qin, Y.W. Mai, Theoretical model of piezoelectric fibre pull-out, International Journal of Solids and Structures, 40(20) (2003) 5511-5519.

[35] Q.H. Qin, J.S. Wang, Y.L. Kang, A theoretical model for electroelastic analysis in piezoelectric fibre push-out test, Archive of Applied Mechanics, 75(8-9) (2006) 527-540.

[36] J.S. Wang, Q.H. Qin, Debonding criterion for the piezoelectric fibre push-out test, Philosophical Magazine Letters, 86(2) (2006) 123-136.

[37] J.S. Wang, Q.H. Qin, Y.L. Kang, Stress and electric field transfer of piezoelectric fibre push-out under electrical and mechanical loading, in:  Proc. of 9th International Conference on Inspection, Appraisal, Repairs & Maintenance of Structures, Fuzhou, China, 20-21 October, CI-Premier PTY LTD, ISBN: 981-05-3548-1, 2005, pp. 435-442.

[38] Z. Liu, Z. Hou, Q.H. Qin, Y. Yu, L. Tang, On electromechanical behaviour of frog sartorius muscles, in:  Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, IEEE, 2006, pp. 1252-1255.

[39] Q.H. Qin, Using GSC theory for effective thermal expansion and pyroelectric coefficients of cracked piezoelectric solids, International Journal of Fracture, 82(3) (1996) R41-R46.

[40] Q.H. Qin, Y.W. Mai, S.W. Yu, Effective moduli for thermopiezoelectric materials with microcracks, International Journal of Fracture, 91(4) (1998) 359-371.

[41] Q.H. Qin, S.W. Yu, Effective moduli of piezoelectric material with microcavities, International Journal of Solids and Structures, 35(36) (1998) 5085-5095.

[42] Q.H. Qin, S.W. Yu, Using Mori-Tanaka method for effective moduli of cracked thermopiezoelectric materials, in:  ICF 9-Sydney, Australia-1997, 1997.

[43] Q.H. Qin, Thermoelectroelastic Green's function for a piezoelectric plate containing an elliptic hole, Mechanics of Materials, 30(1) (1998) 21-29.

[44] Q.H. Qin, Thermoelectroelastic Green’s function for thermal load inside or on the boundary of an elliptic inclusion, Mechanics of Materials, 31(10) (1999) 611-626.

[45] Q.H. Qin, Green's function for thermopiezoelectric plates with holes of various shapes, Archive of Applied Mechanics, 69(6) (1999) 406-418.

[46] Q.H. Qin, Green function and its application for a piezoelectric plate with various openings, Archive of Applied Mechanics, 69(2) (1999) 133-144.

[47] Q.H. Qin, Green's functions of magnetoelectroelastic solids with a half-plane boundary or bimaterial interface, Philosophical Magazine Letters, 84(12) (2004) 771-779.

[48] Q.H. Qin, 2D Green's functions of defective magnetoelectroelastic solids under thermal loading, Engineering Analysis with Boundary Elements, 29(6) (2005) 577-585.

[49] Q.H. Qin, Green’s functions of magnetoelectroelastic solids and applications to fracture analysis, in:  Proc. of 9th International Conference on Inspection, Appraisal, Repairs & Maintenance of Structures, Fuzhou, China, 20-21 October,2005, CI-Premier PTY LTD, ISBN: 981-05-3548-1, 2005, pp. 93-106.

[50] Q.H. Qin, Y.W. Mai, Thermoelectroelastic Green's function and its application for bimaterial of piezoelectric materials, Archive of Applied Mechanics, 68(6) (1998) 433-444.

[51] Q.H. Qin, General solutions for thermopiezoelectrics with various holes under thermal loading, International Journal of Solids and Structures, 37(39) (2000) 5561-5578.

[52] Q.H. Qin, Y.W. Mai, A new thermoelectroelastic solution for piezoelectric materials with various openings, Acta Mechanica, 138(1) (1999) 97-111.

[53] Q.H. Qin, Y.W. Mai, S.W. Yu, Some problems in plane thermopiezoelectric materials with holes, International Journal of Solids and Structures, 36(3) (1999) 427-439.

[54] Q.H. Qin, A new solution for thermopiezoelectric solid with an insulated elliptic hole, Acta Mechanica Sinica, 14(2) (1998) 157-170.

[55] Q.H. Qin, General solutions for thermopiezoelectric materials with various openings, Encyclopedia of Thermal Stresses,  (2014) 1932-1942.

[56] Q.H. Qin, Thermoelectroelastic analysis of cracks in piezoelectric half-plane by BEM, Computational Mechanics, 23(4) (1999) 353-360.

[57] Q.H. Qin, Material properties of piezoelectric composites by BEM and homogenization method, Composite structures, 66(1) (2004) 295-299.

[58] Q.H. Qin, Micromechanics-BE solution for properties of piezoelectric materials with defects, Engineering Analysis with Boundary Elements, 28(7) (2004) 809-814.

[59] Q.H. Qin, Micromechanics-BEM Analysis for Piezoelectric Composites, Tsinghua Science & Technology, 10(1) (2005) 30-34.

[60] Q.H. Qin, Boundary Element Method, in: J.S. Yang (Ed.) Special Topics in the Theory of Piezoelectricity, Springer, Cambridge Massachusetts, 2009, pp. 137-168.

[61] Q.H. Qin, Analysis of Piezoelectric Solids through Boundary Element Method, J Appl Mech Eng, 2(1) (2012) e113.

[62] Q.H. Qin, Y.W. Mai, BEM for crack-hole problems in thermopiezoelectric materials, Engineering Fracture Mechanics, 69(5) (2002) 577-588.

[63] Q.H. Qin, Mode III fracture analysis of piezoelectric materials by Trefftz BEM, Structural Engineering and Mechanics, 20(2) (2005) 225-240.

[64] Q.H. Qin, Thermopiezoelectric interaction of macro-and micro-cracks in piezoelectric medium, Theoretical and Applied Fracture Mechanics, 32(2) (1999) 129-135.

[65] Q.H. Qin, Variational formulations for TFEM of piezoelectricity, International Journal of Solids and Structures, 40(23) (2003) 6335-6346.

[66] Q.H. Qin, Fracture Analysis of Piezoelectric Materials by Boundary and Trefftz Finite Element Methods, WCCM VI in conjunction with APCOM’04, Sept. 5-10, 2004, Beijing, China,  (2004).

[67] Q.H. Qin, Trefftz Plane Element of Piezoelectric Plate with p-Extension Capabilities, IUTAM Symposium on Mechanics and Reliability of Actuating Materials,  (2006) 144-153.

[68] C. Cao, Q.H. Qin, A. Yu, Hybrid fundamental-solution-based FEM for piezoelectric materials, Computational Mechanics, 50(4) (2012) 397-412.

[69] C. Cao, A. Yu, Q.H. Qin, A new hybrid finite element approach for plane piezoelectricity with defects, Acta Mechanica, 224(1) (2013) 41-61.

[70] H. Wang, Q.H. Qin, Fracture analysis in plane piezoelectric media using hybrid finite element model, in:  International Conference of fracture, 2013.

[71] Q.H. Qin, M. Lu, BEM for crack-inclusion problems of plane thermopiezoelectric solids, International Journal for Numerical Methods in Engineering, 48(7) (2000) 1071-1088.

[72] Q.H. Qin, Thermoelectroelastic solution for elliptic inclusions and application to crack–inclusion problems, Applied Mathematical Modelling, 25(1) (2000) 1-23.

[73] Q.H. Qin, Y.W. Mai, Crack growth prediction of an inclined crack in a half-plane thermopiezoelectric solid, Theoretical and Applied Fracture Mechanics, 26(3) (1997) 185-191.

[74] H.Y. Liu, Q.H. Qin, Y.W. Mai, Crack growth in composites with piezoelectric fibers, in:  Proc. of the Third Int. Conf. for Mesomechanics, Xi’an, China, June 13-16, Tsinghua Univ. Press, Vol. 1, 2000, pp. 357-366.

[75] Q.H. Qin, Y.W. Mai, Multiple cracks in thermoelectroelastic bimaterials, Theoretical and Applied Fracture Mechanics, 29(2) (1998) 141-150.

[76] Q.H. Qin, Y.W. Mai, Thermal analysis for cracks near interfaces between piezoelectric materials, Localized Damage 1998: Fifth International Conference on Damage and Fracture Mechanics,  (1998) 13-22.

[77] Q.H. Qin, S.W. Yu, An arbitrarily-oriented plane crack terminating at the interface between dissimilar piezoelectric materials, International Journal of Solids and Structures, 34(5) (1997) 581-590.

[78] Q.H. Qin, S.W. Yu, On the plane piezoelectric problem of a loaded crack terminating at a material interface, Acta Mechanica Solida Sinica, 9 (1996) 151-158.

[79] Q.H. Qin, Y.W. Mai, A closed crack tip model for interface cracks in thermopiezoelectric materials, International Journal of Solids and Structures, 36(16) (1999) 2463-2479.

[80] Q.H. Qin, Y.W. Mai, Crack path selection in piezoelectric bimaterials, Composite structures, 47(1) (1999) 519-524.

[81] Q.H. Qin, J.S. Wang, X. Li, Effect of elastic coating on fracture behaviour of piezoelectric fibre with a penny-shaped crack, Composite structures, 75(1) (2006) 465-471.

[82] J.S. Wang, Q.H. Qin, Penny-shaped Crack in a Solid Piezoelectric Cylinder With Two Typical Boundary Conditions, Journal of Beijing University of Technology, 32(S1) (2006) 29-34.

[83] Q.H. Qin, S. Yu, Logarithmic singularity at crack tips in piezoelectric media, Chinese science bulletin, 41(7) (1996) 563-566.

[84] W. Qiu, Y. Kang, Q. Sun, Q.H. Qin, Y. Lin, Stress analysis and geometrical configuration selection for multilayer piezoelectric displacement actuator, Acta Mechanica Solida Sinica, 17(4) (2004) 323-329.

[85] W. Qiu, Y.L. Kang, Q.H. Qin, Q. Sun, F. Xu, Study for multilayer piezoelectric composite structure as displacement actuator by Moire interferometry and infrared thermography experiments, Materials Science and Engineering: A, 452 (2007) 228-234.

[86] J.S. Wang, Q.H. Qin, Symplectic model for piezoelectric wedges and its application in analysis of electroelastic singularities, Philosophical Magazine, 87(2) (2007) 225-251.

[87] C.-Y. Lee, Q.H. Qin, G. Walpole, Numerical modeling on electric response of fibre-orientation of composites with piezoelectricity, International Journal of Research and Reviews in Applied Science, 16(3) (2013) 377-386.

[88] Q.S. Yang, Q.H. Qin, T. Liu, Interlayer stress in laminate beam of piezoelectric and elastic materials, Composite structures, 75(1) (2006) 587-592.

[89] Q.S. Yang, Q.H. Qin, L. Ma, X. Lu, C. Cui, A theoretical model and finite element formulation for coupled thermo-electro-chemo-mechanical media, Mechanics of Materials, 42(2) (2010) 148-156.

[90] S.W. Yu, Q.H. Qin, Damage analysis of thermopiezoelectric properties: Part I—crack tip singularities, Theoretical and Applied Fracture Mechanics, 25(3) (1996) 263-277.

[91] S.W. Yu, Q.H. Qin, Damage analysis of thermopiezoelectric properties: Part II. Effective crack model, Theoretical and Applied Fracture Mechanics, 25(3) (1996) 279-288.

[92] S. Lin, F. Narita, Y. Shindo, Electroelastic analysis of a penny-shaped crack in a piezoelectric ceramic under mode I loading, Mechanics Research Communications, 30(4) (2003) 371-386.

[93] H. Wang, Q.H. Qin, Fundamental-solution-based hybrid FEM for plane elasticity with special elements, Computational Mechanics, 48(5) (2011) 515-528.

[94] H. Wang, Q.H. Qin, Fundamental-solution-based finite element model for plane orthotropic elastic bodies, European Journal of Mechanics-A/Solids, 29(5) (2010) 801-809.

[95] M. Dhanasekar, J. Han, Q.H. Qin, A hybrid-Trefftz element containing an elliptic hole, Finite Elements in Analysis and Design, 42(14) (2006) 1314-1323.

[96] Q.H. Qin, C.X. Mao, Coupled torsional-flexural vibration of shaft systems in mechanical engineering—I. Finite element model, Computers & Structures, 58(4) (1996) 835-843.

[97] Q.H. Qin, Hybrid Trefftz finite-element approach for plate bending on an elastic foundation, Applied Mathematical Modelling, 18(6) (1994) 334-339.

[98] Q.H. Qin, The Trefftz finite and boundary element method, WIT Press, Southampton, 2000.

[99] Q.H. Qin, Trefftz finite element method and its applications, Applied Mechanics Reviews, 58(5) (2005) 316-337.

[100] Q.H. Qin, Hybrid-Trefftz finite element method for Reissner plates on an elastic foundation, Computer Methods in Applied Mechanics and Engineering, 122(3-4) (1995) 379-392.

[101] H. Wang, Q.H. Qin, Hybrid FEM with fundamental solutions as trial functions for heat conduction simulation, Acta Mechanica Solida Sinica, 22(5) (2009) 487-498.

[102] Q.H. Qin, H. Wang, Matlab and C programming for Trefftz finite element methods, New York: CRC Press, 2008.

[103] J. Jirousek, Q.H. Qin, Application of hybrid-Trefftz element approach to transient heat conduction analysis, Computers & Structures, 58(1) (1996) 195-201.

[104] Q.H. Qin, X.Q. He, Variational principles, FE and MPT for analysis of non-linear impact-contact problems, Computer methods in applied mechanics and engineering, 122(3) (1995) 205-222.

[105] Y. Cui, J. Wang, M. Dhanasekar, Q.H. Qin, Mode III fracture analysis by Trefftz boundary element method, Acta Mechanica Sinica, 23(2) (2007) 173-181.

[106] W.-G. Jiang, R.-Z. Zhong, Q.H. Qin, Y.-G. Tong, Homogenized Finite Element Analysis on Effective Elastoplastic Mechanical Behaviors of Composite with Imperfect Interfaces, International Journal of Molecular Sciences, 15(12) (2014) 23389-23407.

[107] H.-W. Wang, Q.H. Qin, H. Ji, Y. Sun, Comparison Among Different Modeling Techniques of 3D Micromechanical Modeling of Damage in Unidirectional Composites, Advanced Science Letters, 4(2) (2011) 400-407.

[108] B.-L. Wang, N. Noda, J.-C. Han, S.-Y. Du, A penny-shaped crack in a transversely isotropic piezoelectric layer, European Journal of Mechanics-A/Solids, 20(6) (2001) 997-1005.

[109] J. Yang, K. Lee, Penny shaped crack in a three-dimensional piezoelectric strip under in-plane normal loadings, Acta Mechanica, 148(1-4) (2001) 187-197.

[110] J.H. Yang, K.Y. Lee, Penny shaped crack in a piezoelectric cylinder surrounded by an elastic medium subjected to combined in-plane mechanical and electrical loads, International journal of solids and structures, 40(3) (2003) 573-590.

 

Publication Details

Published in : Volume 3 | Issue 5 | July-August 2017
Date of Publication : 2017-08-31
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 349-361
Manuscript Number : IJSRSET173497
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Yi Xiao, " Advance in Penny-Shaped Cracks of Piezoelectricity, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 3, Issue 5, pp.349-361, July-August-2017. Citation Detection and Elimination     |     
Journal URL : https://ijsrset.com/IJSRSET173497

Article Preview