Topological Indices of Nanotubes : An Overview

Authors(1) :-Sufia Aziz

The study of topological indices of graphs and therefore of carbon nanotubes is a very important part of graph theory and thus nanotechnology. A topological index is a real number related to a graph. There are several topological indices used in chemical graph theory, however, a very few of them are found useful in nanotechnology for solving structural problems related to carbon nanotubes. In this article a brief summary on the development of Wiener, Szeged and Padmakar-Ivan indices for carbon nanotubes is given.

Authors and Affiliations

Sufia Aziz
Department of Applied Sciences (Mathematics), Institute of Engineering and Technology, Devi Ahilya University, Indore, Madhya Pradesh, India

Topological index, Benzenoid graph, Carbon Nanotubes, Wiener index, Szeged index, Padmakar−Ivan index

  1. Ashrafi, A.R., Computing the PI Index of Some Chemical Graphs Related to Nanostructures, The Third Conference of the Asian Consortium for Computational Materials Science, ACCMS-3, Institute of Physics, Chinese Academy of Science, 2005.
  2. Ashrafi, A.R.; Loghman, A., PI Index of Zig-Zag Polyhex Nanotubes, MATCH Commun. Math. Comput. Chem., 2006, 55, 447-452.
  3. Ashrafi, A.R.; Loghman, A., PI Index of TUC4C8 Carbon Nanotubes, J. of Theo. And Comp. Nanoscience, 2006, 3(3), 378-381.
  4. Ashrafi, A.R.; Loghman, A., PI Index of Armchair Polyhex Nanotubes, Ars Combinatoria, 2006, 80, 193-199.
  5. Balaban, A.T. Highly discriminating distance-based Ttopological index, Chem. Phys. Lett., 1982, 89, 399-404.
  6. Deng, H.; IIou, J., PI Indices of Nanotubes SC4C8 [q, 2p], MATCH Communication Math. Comput. Chem., 2006, 57.
  7. Deng, H., The PI Index of TUV C6 [2p; q], MATCH Commun. Math. Comput. Chem., 2006, 55, 461-476.
  8. Diudea, M.V.; John, P.E., Wiener Index of Zig-Zag Polyhex Nanotubes, Croat. Chem. Acta 2004, 77, 127-132.
  9. Diudea, M.V.; Stefu, M.; Prav, B.; John, P.E., Wiener Index of Armchair Polyhex Nanotubes, Croat. Chem. Acta 2004, 77, 111-115.
  10. Eliasi M.; Taeri B. Szeged index of armchair polyhex nanotubes, Communications in Mathematical and in Computer Chemistry, 2008, 59, 437 – 450.
  11. Gutman, I. Formula for the Wiener Number of Trees and Its Extension to Graphs Containing Cycles, Graph Theory Notes New York, 1994, 27, 9-15.
  12. Gutman, I., Dobrynin, A. On a Graph invariant related to the sum of all distances in a graph, Publ. Inst. Math., 1994, 56, 18-22.
  13. Iranmanesh, A.; Alizadeh, Y., Computing the Szeged and PI Indices of VC5C7 [p, q] and HC5C7 [p, q] Nanotubes, Int. J. Mol. Sci., 2008, 9, 141-144.
  14. Khadikar, P.V.; Deshpande, N.V.; Kale, P.P.; Dobrynin, A.; Gutman, I.; Domotor, G., The Szeged Index and an Analogy with the Wiener Index, J. Chem. Inf. Comput Sci., 1995, 35, 547-550.
  15. Khadikar, P.V.; Kale, P.P.; Deshpande, N.V.; Karmarkar, S.; Agrawal V.K., Szeged Indices of Hexagonal Chains, Commun. Math. Comput. Chem. (MATCH), 2001, 43, 7-15.
  16. Khadikar, P.V., On a Novel Structural Descriptor PI, Nat. Acad. Sci. Lett. 2000, 23, 113-118.
  17. Khadikar, P.V.; Karmarkar, S.; Agrawal, V.K. A Novel PI Index And Its Applications to QSPR / QSAR Studies, J.Chem. Inf. Comput. Sci. 2001, 41.
  18. Khadikar, P.V.; Kale, P.P.; Deshpande, N.V.; Karmarkar, S.; Agrawal, V.K., Novel PI Indices of Hexagonal Chains, J. Math. Chem., 2001, 29, 143-150.
  19. Khadikar, P.V.; Diudea, M.V.; Singh. John, P.E.; Shrivastava, A.; Singh, S.; Karmakar, S.; Lakhwani, M.; Thakur, P. Use of PI Index In Computer-Aided Designing Of Bioactive Compounds, Curr. Bioact. Comp. 2006, 2, 19-56.
  20. Klavzar, S., Rajapakst, A., Gutman, I. The Szeged and Weiner Index of Graphs, Appl. Math. Lett., 1996, 9, 45-59.
  21. Lijima, S., Helical Micromolecules of Graphitic Carbon, Nature, 1991, 354, 56- 58.
  22. Minailinc, G.M., Katona, G., Diudea, M. V., Strunje, M., Graovac, A., Gutman, I. Szeged Fragmental Indices, Croat. Chem. Acta., 1998, 71, 473-488.
  23. Simic, S., Gutman, I., Baltic, V. Some graphs with extremel Szeged Index, Maths Slovaka, 2000, 50, 1-15.
  24. Sousararaei, A., Mahmiani, A., Khormali, O. Vertex PI Index of some Nanotubes, Iranian J. of Mathematical Sc. And Informatics, 2008, 3(1), 49-62.
  25. Wiener, H., Structural Determination of Paraffin Boiling Points, J. Amer. Chem. Soc. 1947, 69, 17-20.
  26. Yousefi-Azari, H. ; Bahrami, A.; Ashrafi, A.R., Computing PI Index of HAC5C6C7 Nanotubes and Nanotori, J. Comput. Theoret. Nanosci. (In Press).

Publication Details

Published in : Volume 4 | Issue 10 | September-October 2018
Date of Publication : 2018-10-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 313-319
Manuscript Number : IJSRSET1841073
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Sufia Aziz, " Topological Indices of Nanotubes : An Overview , International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 10, pp.313-319, September-October-2018. Available at doi : https://doi.org/10.32628/18410IJSRSET
Journal URL : http://ijsrset.com/IJSRSET1841073

Article Preview

Follow Us

Contact Us