Chemical Reactivity Behavior of Polyethylene and Polyacetylene Depending on Number of Unit via Global Reactivity Parameters and Some Spectral Results

Authors

  • Fatih Ucun  Department of Physics, Faculty of Science and Arts, Suleyman Demirel University Iaparta,Turkey
  • Tugce Akin  Department of Physics, Faculty of Science and Arts, Suleyman Demirel University Iaparta,Turkey
  • Ahmet Tokatli  Department of Physics, Faculty of Science and Arts, Suleyman Demirel University Iaparta,Turkey

DOI:

https://doi.org//10.32628/18410IJSRSET

Keywords:

Polymer, Number of unit, Global Parameters, Spectrum, DFT

Abstract

Polymers are composed of a large number of repeating units, forming a chain. In the present study, the chemical reactivity or stabilities of polyethylene and polyacetylene polymer molecules were investigated depending on the number of unit (n) via global reactivity parameters and some spectral results, In this context, after the geometry optimizations of the molecules were carried out at B3LYP/6–311++G(d,p) level, their global reactivity parameters such as EHOMO, ELUMO, energy gap between ELUMO and EHOMO, ionization potential, electron affinity, electronegativity, chemical potential, hardness, softness, electrophilicity and nucleophilicity, and their spectral results such as IR, 1H NMR and 13C NMR have been calculated and, commented. It was seen that their activities increase with the increasing number of unit (n) but, become nearly constant after n=10 for polyethylene and, after n=18 for polyacetylene. The bigger unit number for polyacetylene was attributed to that it is an unsaturated molecule. In addition we have concluded that these obtained unit numbers are theoretically enough to investigate the chemical properties of these polymers.

References

  1. Heeger A., 2001. Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials, Reviews of Modern Physics 73 (3): 681-700.
  2. Skotheim T.A. Handbook of Conducting Polymers New York: Marcel Dekker; 1986.
  3.  Skotheim T.A., Elsenbaumer R.L., Reynolds J.R., Handbook of Conducting Polymers. 2nd ed. New York: Marcel Dekker; 1997.
  4.  Skotheim T.A., Reynolds J.R., Handbook of Conducting Polymers. 3nd ed. Boca Raton, FL: CRC Press; 2007.
  5.  Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.
  6.  Frish A, Nielsen A.B., Holder A.J. Gauss view user manual. Gaussian Inc., Pittsburg, 2001.
  7.  Chermette H. 1999. Chemical reactivity indexes in density functional theory, J. Comput. Chem. 20:129–154.
  8.  Parr R.G., Chattaraj P.K. 1991. Principle of maximum hardness. J. Am. Chem. Soc. 113:1854–1855.
  9.  Koopmans T. 1933. Ordering of wave functions and eigen-energies to the individual electrons of an atom. Physica 1:104–113.
  10. Islam N, Ghosh D.C. 2011. A new algorithm for the evaluation of the global hardness of polyatomic molecules. Int. J. Quant. Chem. 109:917–931.
  11.  Yang W., Parr R.G. 1985. Hardness, softness and the Fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci. 82:6723–6726.
  12. Parr R.G., Sventpaly L., Liu S. 1999. Electrophilicity index. J. Am. Chem. Soc. 121(9):1922–1924.
  13. Chattaraj P.K., Sarkar U., Roy D.R. 2006. Electrophilicity Index. Chem. Rev. 106(6):2065–2091.
  14. D’Amelia R.P., Gentile S., Nirode W.F., Huang L. 2016. Quantitative analysis of copolymers and blends of polyvinyl acetate (PVAc) Using Fourier Transform Infrared Spectroscopy (FTIR) and Elemental Analysis (EA). World J. Chem. Edu. 4(2): 25-31.
  15. Wei B., Xianglu G., Haotian W., Chengang C., Tao J. 2014. Preparation of spherical MgCl2/SiO2/THF-supported late-transition metal catalysts for ethylene polymerization. China Petroleum Proc. Petrochem. Techno. 16 (3): 77-83.
  16. Och?dzan-Siod?ak W., Dziubek K., Czaja K., Rabiej S., Szatanik R. 2014. High crystallinity polyethylene obtained in biphasic polymerization using pyridinium chloroaluminate ionic liquid. J Polym Res 21:558.
  17. Sanderson, R.T. 1988. Principle of electronegativity. Part I. General nature. J. Chem. Educ. Soc. 65(2):112-118.
  18. Chakraborty T. Gazi K., Ghosh D.C. 2010. Computation of the atomic radii through the conjoint action of the effective nuclear charge and the ionization energy. Mol. Phys. 108(16): 2081-2092.

Downloads

Published

2018-09-30

Issue

Section

Research Articles

How to Cite

[1]
Fatih Ucun, Tugce Akin, Ahmet Tokatli, " Chemical Reactivity Behavior of Polyethylene and Polyacetylene Depending on Number of Unit via Global Reactivity Parameters and Some Spectral Results, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 10, pp.22-29, September-October-2018. Available at doi : https://doi.org/10.32628/18410IJSRSET