Synthesis, Characterization and Antimicrobial Activity of Sulphur doped ZnO Nanoparticals

Authors(1) :-A. E. Athare

Sulfur-doped Zinc Oxide (ZnO) nanowires were successfully Synthesized by C0-precipitation method. The structure morphology chemical composition and antibacterial activity as synthesized S-doped ZnO nanostructures were investigated. X-ray diffraction and the selected area electron diffraction results reveal that the synthesized products are single-phase with hexagonal wurtzite structure with a highly preferential orientation in the (101) direction. EDS-shows that the above route produced highly pure S-doped ZnO nanostructures. The optical band gaps of various ZnO powders were calculated from UV-Visible diffuse reflectance Spectroscopic studies. The FTIR spectrum shows that S-doping had an obvious effect on the stretching and bending frequency.

Authors and Affiliations

A. E. Athare
Department of Chemistry, New Arts, Commerce and Science College , Ahmednagar, Maharashtra, India

Nanoparticles, XRD, SEM, Antibacterial activity.

  1. U. Abulimen, mater. Res. SOC. Symp.Proc., 1, 27.1 (2005)
  2. Foreman, J.V.; LI, V.; Peng, H.; Chol, S.; Everltt, H. O.; Ltu, J. Time-resolved in vestigation of bright visible wavelength luminescence from Sulfur-doped ZnO nanowires and micropowders. Nano Lett. 2006, 6, 1126-1130.
  3. Djurisic, A. B.; Leung, Y. H. optical properties of ZnO nanostructures. Small 2006, 2, 944-961. DOI:10.1002/smll.200600134.
  4. Foreman, J. V.; Everitt, H. O.; Yang, J.; Liu, J. Influence of temperature and photoexcitation density on the quantum efficiency of defect emission in ZnO powders. Appl. Phys. Lett. 2007, 91,011902. DOI: 10.1002/smll.200600134.
  5. Ozgur, U.; Alivov, Y. I.; Liu, C.; Take, A,; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H. A Comrehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.DOI: 10.1063/1.1992666.
  6. Zhang, X. M.; Lu, M. Y.; Zhang, Y.; Chen, L.J.; Wang, Z. L. Fabrication of a high-brightness blue-light-emitting diode using a ZnO nanowire array grown on P-GaN thin film. Adv. Mater. 2009, 21, 2767-2770. DOI: 10.1002/adma.200802686.
  7. Yeh, P. H.; Li, Z.; Wang, Z. L. Schottky-gated probe-free ZnO nanowirre biosensor. Adv. Mater. 2009, 21, 4975-4978.
  8. Weintraub, B.; Wei, Y.; Wang, Z. L. Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angew. Chem. Int. Edit. 2009, 48, 8981-8985. DOI: 10.1002/anie.200904492.
  9. Wang, Z. L.; Song, J. Piezoelectric nanogenrators based on zinc oxide nanowire arrays. Science 2006, 312, 242-246. DOI: 10.1126/science.1124005.
  10. Wang, X.; Song, J.; Liu, J.; Wang, Z. L. Direct-Current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102-105. DOI: 10.1126/science.1139366.
  11. Xu, S,Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366-373. DOI:10.1038/nnano.2010.46.
  12. Y. Z. Yoo, T. Fukumara, Z. Jin, K. Hasegana, M. Kawasaki, P. Ahmet, T. Chikyow and H. Koinuma, J. Appl. Phys. 90, 4246 (2001) DOI: 10.1063/1.1402142.
  13. A. Ontomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshita, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998). DOI: 10.1063/1.124573.
  14. S. Choopun, R. P. VIspute, W. Yang, R. P. Sharma, T. Venkatesan and H. Shen, Appl. Phys. Lett., 80, 1529 (2002). DOI: 10.1063/1.1456266
  15. Y. Z. Yoo, Y. Osaka, T. Fukumura, Z. W. Jin, M. Kawasaki, H. Koinuma, T. Chikyow, P. Ahmet, A. Setoguchi, and S. F. Chichibu, Appl. Phys. Lett., 78, 616 (2001). DOI: 10.1063/1.1344572
  16. Y. Z. Yoo, Z. W. Jin, T. Chikyow, T. Fukumura, M. Kawasaki and H. Koinuma, Appl. Phys. Lett., 81, 3798 (2002). DOI: 10.1063/1.1521577
  17. S. Kawano, J. Takahashi and S. Shimada, J. Am. Ceram. Soc. 86, 701, (2003). DOI: 10.1111/j.1151-2916.2003.tb03360.x
  18. Jian MZ,Yan Z, Ke-Wei X, Vincent J.General compliance transformation relation and applications for anisotropic hexagonal metals. Solid State Communications 2006; 139: 87-91.DOI: 10.1016/j.ssc.2006.05.026.
  19. Tamus U. The Meaning of Size Obtained from Broadened X-ray Diffraction Peaks. Advanced Engineering Materials 2003; 5:323-329.
  20. Powder Diffraction File, Alphabetical Index, Inorganic compounds, Published by JCPDS International Center for Diffraction Data, Newtown Square, PA.19073,2003;5:323-329.
  21. Chou TP,Qifeng Z, Glen EF, Guozhong C. Hierachically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency. Adv Mater 2007; 19;2588-2592. DOI: 10.1002/adma.200602927
  22. Caglara M, Yakuphanoglub F. Structural and Optical properties of copper doped ZnO films derived by Sol-gel. Applied Surface Science 2012;258: 3039-3044. doi: 10.4172/2165-8064.1000328

Publication Details

Published in : Volume 4 | Issue 1 | January-February 2018
Date of Publication : 2018-02-28
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 632-636
Manuscript Number : IJSRSET1841138
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

A. E. Athare, " Synthesis, Characterization and Antimicrobial Activity of Sulphur doped ZnO Nanoparticals , International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 1, pp.632-636, January-February-2018.
Journal URL :

Follow Us

Contact Us