Metabolic Dyshomeostasis in Rats Administered a Single dose of Monocrotophos is not Associated with Oxidative Damage in Liver and Kidney

Authors

  • Apurva Kumar Ramesh Joshi  Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
  • Raju Nagaraju  Food Chemistry Division, National Institute of Nutrition, Jamai-Osmania, Hyderabad, Telangana, India
  • Padmanabhan Sharda Rajini  

Keywords:

Acetylcholinesterase Inhibition, Hyperglycemia, Metabolic Dyshomeostasis, Monocrotophos, Oxidative Stress

Abstract

We have earlier demonstrated the potential of monocrotophos, an organophosphorus insecticide to cause transient hyperglycemia in rats after administration of a single dose. This study was conducted to understand whether hyperglycemia in rats administered a single dose of monocrotophos is associated with oxidative damage in liver and kidney. Oral administration of a single dose of monocrotophos promptly caused classical acute organophosphate toxicity as evidenced by severe inhibition of brain acetylcholinesterase activity. Further, metabolic alterations such as transient hyperglycemia, hypercorticosteronemia, hyperlacticidemia and increase in the activity of hepatic tyrosine aminotransferase were observed in rats treated with monocrotophos. These changes were associated with marginal decrease in glutathione levels in liver and kidney. However, extent of lipid peroxidation and activities of catalase and superoxide dismutase in liver and kidney of monocrotophos-treated rats were comparable to that of vehicle-treated rats. This suggests that single dose of monocrotophos fails to induce oxidative damage in rats in spite of occurrence significant neurotoxicity and metabolic alterations.

References

  1. Sogorb MA, Vilanova E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett 2002;128:215-28.
  2. Abou-Donia MB. Organophosphorus Ester-Induced Chronic Neurotoxicity. Arch Environ Heal An Int J 2003;58:484-97. doi:10.3200/AEOH.58.8.484-497.
  3. Fukuto TR. Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect 1990;87:245-54.
  4. Aygun D, Doganay Z, Altintop L, Guven H, Onar M, Deniz T, et al. Serum Acetylcholinesterase and Prognosis of Acute Organophosphate Poisoning. J Toxicol Clin Toxicol 2002;40:903-10. doi:10.1081/CLT-120016962.
  5. Indian Pharmacological Society. K. Indian journal of pharmacology. vol. 36. Medknow Publications on behalf of Indian Pharmacological Society; 2004.
  6. Meller D, Fraser I, Kryger M. Hyperglycemia in anticholinesterase poisoning. Can Med Assoc J 1981;124:745-8.
  7. Swaminathan K, Sundaram M, Prakash P, Subbiah S. Diabetic ketoacidosis: an uncommon manifestation of pesticide poisoning. Diabetes Care 2013;36:e4. doi:10.2337/dc12-1251.
  8. Seifert J. Toxicologic Significance of the Hyperglycemia Caused by Organophosphorous Insecticides. Bull Environ Contam Toxicol 2001;67:463-9. doi:10.1007/s001280146.
  9. Joshi AKR, Nagaraju R, Rajini PS. Insights into the mechanisms mediating hyperglycemic and stressogenic outcomes in rats treated with monocrotophos, an organophosphorus insecticide. Toxicology 2012;294:9-16. doi:10.1016/j.tox.2012.01.009.
  10. Joshi AKR, Rajini PS. Hyperglycemic and stressogenic effects of monocrotophos in rats: evidence for the involvement of acetylcholinesterase inhibition. Exp Toxicol Pathol 2012;64:115-20. doi:10.1016/j.etp.2010.07.003.
  11. Joshi AKR, Rajini PS. Reversible hyperglycemia in rats following acute exposure to acephate, an organophosphorus insecticide: role of gluconeogenesis. Toxicology 2009;257:40-5. doi:10.1016/j.tox.2008.12.006.
  12. Matin MA, Khan SN, Hussain K, Sattar S. Effect of adrenalectomy on diazinon-induced changes in carbohydrate metabolism. Arch Toxicol 1989;63:376-80. doi:10.1007/BF00303126.
  13. Deotare ST, Chakrabarti CH. Effect of acephate (orthene) on tissue levels of thiamine, pyruvic acid, lactic acid, glycogen and blood sugar. Indian J Physiol Pharmacol 1981;25:259-64.
  14. Lukaszewicz-Hussain A. Role of oxidative stress in organophosphate insecticide toxicity - Short review. Pestic Biochem Physiol 2010;98:145-50. doi:10.1016/J.PESTBP.2010.07.006.
  15. Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A. Pesticides and oxidative stress: a review. Med Sci Monit 2004;10:RA141-7.
  16. Pearson JN, Patel M. The role of oxidative stress in organophosphate and nerve agent toxicity. Ann N Y Acad Sci 2016;1378:17-24. doi:10.1111/nyas.13115.
  17. Kamath V, Rajini P. Altered glucose homeostasis and oxidative impairment in pancreas of rats subjected to dimethoate intoxication. Toxicology 2007;231:137-46. doi:10.1016/j.tox.2006.11.072.
  18. Kamath V, Joshi AKR, Rajini PS. Dimethoate induced biochemical perturbations in rat pancreas and its attenuation by cashew nut skin extract. Pestic Biochem Physiol 2008;90:58-65. doi:10.1016/j.pestbp.2007.07.007.
  19. Zenker N, Bernstein DE. The estimation of small amounts of corticosterone in rat plasma. J Biol Chem 1958;231:695-701.
  20. Barker SB, Summerson WH. The colorimetric determination of lactic acid in biological material. J Biol Chem 1941;138:535-54.
  21. Galgani F, Bocquene G. Semi-automated colorimetric and enzymatic assays for aquatic organisms using microplate readers. Water Res 1991;25:147-50. doi:10.1016/0043-1354(91)90023-J.
  22. Diamondstone TI. Assay of tyrosine transaminase activity by conversion of p-hydroxyphenylpyruvate to p-hydroxybenzaldehyde. Anal Biochem 1966;16:395-401. doi:10.1016/0003-2697(66)90220-X.
  23. Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 1976;74:214-26.
  24. Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 1952;195:133-40.
  25. Kostyuk VA, Potapovich AI. Superoxide--driven oxidation of quercetin and a simple sensitive assay for determination of superoxide dismutase. Biochem Int 1989;19:1117-24.
  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-75.
  27. Rodrigues MALR, Puga FR, Chenker E, Mazanti MT. Short-term effect of malathion on rats’ blood glucose and on glucose utilization by mammalian cells in vitro. Ecotoxicol Environ Saf 1986;12:110-3. doi:10.1016/0147-6513(86)90046-1.
  28. Lasram MM, Annabi AB, Rezg R, Elj N, Slimen S, Kamoun A, et al. Effect of short-time malathion administration on glucose homeostasis in Wistar rat. Pestic Biochem Physiol 2008;92:114-9. doi:10.1016/J.PESTBP.2008.06.006.
  29. Spassova D, White T, Singh AK. Acute effects of acephate and methamidophos on acetylcholinesterase activity, endocrine system and amino acid concentrations in rats. Comp Biochem Physiol C Toxicol Pharmacol 2000;126:79-89.
  30. Osicka-Koprowska A, Lipska M, Wysocka-Paruszewska B. Effects of chlorfenvinphos on plasma corticosterone and aldosterone levels in rats. Arch Toxicol 1984;55:68-9.
  31. Smallridge RC, Carr FE, Fein HG. Diisopropylfluorophosphate (DFP) reduces serum prolactin, thyrotropin, luteinizing hormone, and growth hormone and increases adrenocorticotropin and corticosterone in rats: Involvement of dopaminergic and somatostatinergic as well as cholinergic pathways. Toxicol Appl Pharmacol 1991;108:284-95. doi:10.1016/0041-008X(91)90118-X.
  32. Kassa J, Bajgar J. Comparison of the efficacy of HI-6 and obidoxime against cyclohexyl methyl phosphonofluoridate (GF) in rats. Hum Exp Toxicol 1995;14:923-8. doi:10.1177/096032719501401111.
  33. Fletcher HP, Akbar WJ, Peoples RW, Spratto GR. Effect of acute soman on selected endocrine parameters and blood glucose in rats. Fundam Appl Toxicol 1988;11:580-6. doi:10.1016/0272-0590(88)90122-4.
  34. Rosmond R. The Glucocorticoid Receptor Gene and Its Association to Metabolic Syndrome. Obes Res 2002;10:1078-86. doi:10.1038/oby.2002.146.
  35. Jantzen H-M, Strähle U, Gloss B, Stewart F, Schmid W, Boshart M, et al. Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotransferase gene. Cell 1987;49:29-38. doi:10.1016/0092-8674(87)90752-5.
  36. Schmid E, Schmid W, Jantzen M, Mayer D, Jastorff B, Schütz G. Transcription activation of the tyrosine aminotransferase gene by glucocorticoids and cAMP in primary hepatocytes. Eur J Biochem 1987;165:499-506.
  37. Einstein M, Greenlee M, Rouen G, Sitlani A, Santoro J, Wang C, et al. Selective glucocorticoid receptor nonsteroidal ligands completely antagonize the dexamethasone mediated induction of enzymes involved in gluconeogenesis and glutamine metabolism. J Steroid Biochem Mol Biol 2004;92:345-56. doi:10.1016/j.jsbmb.2004.10.009.
  38. Honer C, Nam K, Fink C, Marshall P, Ksander G, Chatelain RE, et al. Glucocorticoid receptor antagonism by cyproterone acetate and RU486. Mol Pharmacol 2003;63:1012-20. doi:10.1124/mol.63.5.1012.

Downloads

Published

2018-02-28

Issue

Section

Research Articles

How to Cite

[1]
Apurva Kumar Ramesh Joshi, Raju Nagaraju, Padmanabhan Sharda Rajini, " Metabolic Dyshomeostasis in Rats Administered a Single dose of Monocrotophos is not Associated with Oxidative Damage in Liver and Kidney, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 1, pp.1280-1287, January-February-2018.