Emancipation of Upper Bound Greedy Algorithm in Detection of Nodes in Social Networks

Authors(2) :-Shaik Aasha, T. Nagini

Static and dynamic networks classification has become applicable to an extending measure of applications, particularly resulting to the ascent of social platforms and social media. Regardless, execution of existing strategies on real-world images is still fundamentally missing, especially when considered the immense bounced in execution starting late reported for the related task of face acknowledgment. In this paper we exhibit that by learning representations through the use of significant Convolutional Neural Systems (CNN), a huge augmentation in execution can be acquired on these errands. To this end, we propose a direct Convolutional Neural System engineering can be used despite when the measure of learning data is limited. We survey our procedure on the recent Adience benchmark for static and dynamic networks estimation and demonstrate it to radically outflank current state-of-the-art methods.

Authors and Affiliations

Shaik Aasha
M.Tech Scholar Department of CS, St.Mary’s Group of Institutions Guntur Chebrolu(V&M),Guntur(Dt), Andhra Pradesh, India
T. Nagini
Assistant Professor Department of CSE, St.Mary’s Group of Institutions Guntur Chebrolu(V&M),Guntur(Dt), Andhra Pradesh, India

Neural Network, Social Networks.

  1. Ahonen, A. Hadid, and M. Pietikainen. "Face description with local binary patterns: Application to face recognition", Trans. Pattern Anal. Mach. Intell., 28(12):2037-2041, 2006.
  2. Baluja and H. A. Rowley. "Boosting sex identification performance", Int. J. Comput. Vision, 71(1):111-119, 2007.
  3. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. "Learning distance functions using equivalence relations", In Int. Conf. Mach. Learning, volume 3, pages 11-18, 2003.
  4. L. Chao, J.-Z. Liu, and J.-J. Ding. "Facial age estimation based on label-sensitive learning and age-oriented regression", Pattern Recognition, 46(3):628-641, 2013. 1, 2
  5. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. "Return of the devil in the details: Developing deep into convolutional nets", arXiv preprint arXiv:1405.3531, 2014.
  6. E. Choi, Y. J. Lee, S. J. Lee, K. R. Park, and J. Kim. "Age estimation using a hierarchical classifier based on global and local facial features", Pattern Recognition, 44(6):1262-1281, 2011. 2
  7. F. Cootes, G. J. Edwards, and C. J. Taylor. "Active appearance models", In European Conf. Comput. Vision, pages 484-498. Springer, 1998.
  8. Cortes and V. Vapnik. "Support-vector networks", Machine learning, 20(3):273-297, 1995.
  9. Eidinger, R. Enbar, and T. Hassner. "Static and dynamic networks estimation of unfiltered faces", Trans. on Inform. Forensics and Security, 9(12), 2014.
  10. Fu, G. Guo, and T. S. Huang. "Age synthesis and estimation via faces: A survey", Trans. Pattern Anal. Mach. Intell., 32(11):1955-1976, 2010.
  11. Fu and T. S. Huang. "Human age estimation with regression on discriminative aging manifold", Int. Conf. Multimedia, 10(4):578-584, 2008.
  12. E. Choi, Y. J. Lee, S. J. Lee, K. R. Park, and J. Kim. "Age estimation using a hierarchical classifier based on global and local facial features", Pattern Recognition, 44(6):1262-1281, 2011. 2
  13. F. Cootes, G. J. Edwards, and C. J. Taylor. "Active appearance models", In European Conf. Comput. Vision, pages 484-498. Springer, 1998.
  14. Cortes and V. Vapnik. "Support-vector networks", Machine learning, 20(3):273-297, 1995.
  15. Eidinger, R. Enbar, and T. Hassner. "Static and dynamic networks estimation of unfiltered faces", Trans. on Inform. Forensics and Security, 9(12), 2014.
  16. Fu, G. Guo, and T. S. Huang. "Age synthesis and estimation via faces: A survey", Trans. Pattern Anal. Mach. Intell., 32(11):1955-1976, 2010.
  17. Fu and T. S. Huang. "Human age estimation with regression on discriminative aging manifold", Int. Conf. Multimedia, 10(4):578-584, 2008.
  18. Fukunaga. "Introduction to statistical pattern recognition", Academic press, 1991.
  19. C. Gallagher and T. Chen. "Understanding images of groups of people", In Proc. Conf. Comput. Vision Pattern Recognition, pages 256-263. IEEE, 2009.
  20. Gao and H. Ai. "Face age classification on consumer images with gabor feature and fuzzy LDA method", In Advances in biometrics, pages 132-141. Springer, 2009.
  21. Geng, Z.-H. Zhou, and K. Smith-Miles. "Automatic age estimation based on facial aging patterns", Trans. Pattern Anal. Mach. Intell., 29(12):2234- 2240, 2007.
  22. A. Golomb, D. T. Lawrence, and T. J. Sejnowski. Sexnet: "A neural network identifies sex from human faces", In Neural Inform. Process. Syst., pages 572-579, 1990.
  23. Graves, A.-R. Mohamed, and G. Hinton. "Speech recognition with deep recurrent neural networks", In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE Inter-national Conference on, pages 6645-6649. IEEE, 2013.
  24. Guo, Y. Fu, C. R. Dyer, and T. S. "Huang. Image-based human age estimation by manifold learning and locally adjusted robust regression", Trans. Image Processing, 17(7):1178-1188, 2008. 2
  25. Guo, G. Mu, Y. Fu, C. Dyer, and T. Huang. "A study on automatic age estimation using a large database", In Proc. Int. Conf. Comput. Vision, pages 1986-1991. IEEE, 2009.
  26. Han, C. Otto, and A. K. Jain. "Age estimation from face images: Human vs. machine performance", In Biometrics (ICB), 2013 International Conference on. IEEE, 2013.
  27. Hassner. "Viewing real-world faces in 3D", In Proc. Int. Conf. Comput. Vision, pages 3607-3614. IEEE, 2013.
  28. Hassner, S. Harel, E. Paz, and R. Enbar. "Effective face frontalization in unconstrained images", Proc. Conf. Comput. Vision Pattern Recognition, 2015.
  29. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. "Improving neural networks by pre-venting co-adaptation of feature detectors", arXiv preprint arXiv:1207.0580, 2012.
  30. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. "Labeled faces in the wild: A database for studying face recognition in unconstrained environments", Technical re-port, Technical Report 07-49, University of Massachusetts, Amherst, 2007.
  31. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-shick, S. Guadarrama, and T. Darrell. "Caffe: Convolutional architecture for fast feature embedding", arXiv preprint arXiv:1408.5093, 2014.
  32. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. "Large-scale video classification with convolutional neural networks", In Proc. Conf. Comput. Vision Pattern Recognition, pages 1725-1732. IEEE, 2014.
  33. Krizhevsky, I. Sutskever, and G. E. Hinton. "Image-net classification with deep convolutional neural networks", Neural Inform. Process. Syst., pages 1097-1105, 2012.
  34. H. Kwon and N. da Vitoria Lobo. "Age classification from facial images", In Proc. Conf. Comput. Vision Pattern Recognition, pages 762-767. IEEE, 1994.
  35. Lanitis. "The FG-NET aging database, 2002", Available: www-prima.inrialpes.fr/FGnet/html/ benchmarks.html.
  36. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. "Back-propagation applied to handwritten zip code recognition", Neural computation, 1(4):541-551, 1989.
  37. Liu and H. Wechsler. "Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition", Trans. Image Processing, 11(4):467-476, 2002.
  38. Luo, X. Wang, and X. Tang. "Hierarchical face parsing via deep learning", In Proc. Conf. Comput. Vision Pattern Recognition, pages 2480-2487. IEEE, 2012.
  39. Makinen and R. Raisamo. "Evaluation of gender classification methods with automatically detected and aligned faces", Trans. Pattern Anal. Mach. Intell., 30(3):541-547, 2008.
  40. Moghaddam and M.-H. Yang. "Learning gender with support faces", Trans. Pattern Anal. Mach. Intell., 24(5):707- 711, 2002.
  41. Niyogi. "Locality preserving projections", In Neural In-form. Process. Syst., volume 16, page 153. MIT, 2004.
  42. J. O’toole, T. Vetter, N. F. Troje, H. H. Bulthoff,¨ et al. "Sex classification is better with three-dimensional head structure than with image intensity information", Perception, 26:75-84, 1997.
  43. Perez, J. Tapia, P. Estevez,´ and C. Held. "Gender classification from face images using mutual information and feature fusion", International Journal of Optomechatronics, 6(1):92- 119, 2012.
  44. J. Phillips, H. Wechsler, J. Huang, and P. J. Rauss. "The FERET database and evaluation procedure for face-recognition algorithms", Image and vision computing, 16(5):295-306, 1998.
  45. Rabiner and B.-H. Juang. "An introduction to Hidden Markov Models", ASSP Magazine, IEEE, 3(1):4-16, 1986.
  46. Ramanathan and R. Chellappa. "Modeling age progression in young faces", In Proc. Conf. Comput. Vision Pattern Recognition, volume 1, pages 387- 394. IEEE, 2006.
  47. Reid, S. Samangooei, C. Chen, M. Nixon, and A. Ross. "Soft biometrics for surveillance: an overview", Machine learning: theory and applications. Elsevier, pages 327-352, 2013.
  48. Ricanek and T. Tesafaye. "Morph: A longitudinal image database of normal adult age-progression", In Int. Conf. on Automatic Face and Gesture Recognition, pages 341-345. IEEE, 2006.
  49. Riesenhuber and T. Poggio. "Hierarchical models of object recognition in cortex", Nature neuroscience, 2(11):1019- 1025, 1999.
  50. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. "Image Net Large Scale Visual Recognition Challenge", 2014.
  51. Shan. "Learning local binary patterns for gender classification on real-world face images", Pattern Recognition Letters, 33(4):431-437, 2012.
  52. Sun, X. Wang, and X. Tang. "Deep convolutional network cascade for facial point detection", In Proc. Conf. Comput. Vision Pattern Recognition, pages 3476-3483. IEEE, 2013.
  53. Sun, X. Wang, and X. Tang. "Deep learning faces representation from predicting 10,000 classes", In Proc. Conf. Com-put. Vision Pattern Recognition, pages 1891-1898. IEEE, 2014.
  54. Toews and T. Arbel. "Detection, localization, and sex classification of faces from arbitrary viewpoints and under occlusion", Trans. Pattern Anal. Mach. Intell., 31(9):1567-1581, 2009.
  55. Toshev and C. Szegedy. Deeppose: "Human pose estimation via deep neural networks", In Proc. Conf. Comput. Vision Pattern Recognition, pages 1653-1660. IEEE, 2014.
  56. Ullah, M. Hussain, G. Muhammad, H. Aboalsamh, G. Be-bis, and A. M. Mirza. "Gender recognition from face images with local world descriptor", In Systems, Signals and Image Processing, pages 417-420. IEEE, 2012.
  57. N. Vapnik and V. Vapnik. "Statistical learning theory", volume 1. Wiley New York, 1998.
  58. Wolf, T. Hassner, and Y. Taigman. "Descriptor based methods in the wild", In post-ECCV Faces in Real-Life Images Workshop, 2008.
  59. Yan, M. Liu, and T. S. Huang. "Extracting age information from local spatially flexible patches", In Acoustics, Speech and Signal Processing, pages 737-740. IEEE, 2008.
  60. Yan, X. Zhou, M. Liu, M. Hasegawa-Johnson, and T. S. Huang. "Regression from patch-kernel", In Proc. Conf. Com-put. Vision Pattern Recognition. IEEE, 2008.
  61. Zhuang, X. Zhou, M. Hasegawa-Johnson, and T. Huang. "Face age estimation using patch-based Hidden Markov Model super vectors", In Int. Conf. Pattern Recognition. IEEE, 2008.

Publication Details

Published in : Volume 4 | Issue 1 | January-February 2018
Date of Publication : 2018-02-28
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 723-731
Manuscript Number : IJSRSET1841194
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Shaik Aasha, T. Nagini, " Emancipation of Upper Bound Greedy Algorithm in Detection of Nodes in Social Networks, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 1, pp.723-731, January-February-2018.
Journal URL : http://ijsrset.com/IJSRSET1841194

Follow Us

Contact Us