Automatic Delineation of Water Bodies Using Multiple Spectral Indices

Authors(5) :-D. Nandi, R. Chowdhury, J. Mohapatra, K. Mohanta, D. Ray

In our study, Land and water surface changes in Lake Chilika from 1996 to 2014 were dileneated by using multi-temporal Landsat images and soupportsof the spectral water indexing method. In our research, we used indices i.e Normalized Difference Water Index (NDWI), Modified NDWI (MNDWI) and Automated Water Extraction Index (AWEI). The MNDWI, NDWI and AWEI provide the best result for extracting surface waterbody and find out spatiotemporal changes of the Chilika lake .by appliing Landsat images through GIS software. The NDWI can be utilized for interpretation of the areal extent of water bodies every imageries of Land Sat data.. But,WRI and MNDWI are restricted for use only in images that have the MIR band. MNDWI provides for a sophisticated and refined estimation of the extent of surface water bodies within the Chilika lake.

Authors and Affiliations

D. Nandi
North Orissa University, Odisha, India
R. Chowdhury
North Orissa University, Odisha, India
J. Mohapatra
North Orissa University, Odisha, India
K. Mohanta
North Orissa University, Odisha, India
D. Ray

Change Detection, Remote Sensing, Surface Water Extraction, Water Indices, Lake Abjata, Lake Shala, Lake Langano

  1. Bagan, H.; Yamagata, Y. Landsat analysis of urban growth: How Tokyo became the world’s largest megacity during the last 40 years. Remote Sens. Environ. 2012, 127, 210-222.
  2. Zhu, X.; Cao, J.; Dai, Y. A Decision Tree Model For Meteorological Disasters Grade Evaluation of Flood. In Proceedings of 4th International Joint Conference on Computational Sciences and Optimization 2011, Kunming and Lijiang, Yunnan, China, 15-19 April 2011; Institute of Electrical and Electronics Engineers: New York NY, USA, 2011; pp. 916-919.
  3. Lu, S.; Wu, B.; Yan, N.; Wang, H. Water body mapping method with HJ-1A/B satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 428-434.
  4. Du, Z.; Linghu, B.; Ling, F.; Li, W.; Tian, W.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. Estimating surface water area changes using time-series Landsat data in the qingjiang river basin, China. J. Appl. Remote Sens. 2012, 6, doi:10.1117/1.JRS.6.063609.
  5. Sun, F.; Sun, W.; Chen, J.; Gong, P. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. Int. J. Remote Sens. 2012, 33, 6854-6875.
  6. Alesheikh, A.A.; Ghorbanali, A.; Nouri, N. Coastline change detection using remote sensing. Int. J. Environ. Sci. Technol. 2007, 4, 61-66.
  7. Lopez-Caloca, A.; Tapia-Silva, F.O.; Escalante-Ramirez, B. Lake Chapala change detection using time series. Remote Sens. Agric. Ecosyst. Hydrol. 2008, 7104, 1-11.
  8. El-Asmar, H.M.; Hereher, M.E. Change detection of the coastal zone east of the Nile Delta using remote sensing. Environ. Earth Sci. 2011, 62, 769-777.
  9. Xu, Y.B.; Lai, X.J.; Zhou, C.G. Water surface change detection and analysis of bottomland submersion-emersion of wetlands in Poyang Lake reserve using ENVISAT ASAR data. China Environ. Sci. 2010, 30, 57-63.
  10. Delju, A.H.; Ceylan, A.; Piguet, E.; Rebetez, M. Observed climate variability and change in Urmia lake basin, Iran. Theor. Appl. Climatol. 2012, 111, 285-296.
  11. Eimanifar, A.; Mohebbi, F. Urmialake (northwest Iran): A brief review. Saline Syst. 2007, 3, 1-8.
  12. Death of Urmia Lake, A Silent Disaster Investigating of Causes, Results and Solutions of Urmia Lake Drying. Available online: http://conference.khuisf.ac.ir/DorsaPax/userfiles/file/pazhohesh/ zamin%20mashad/127.pdf (accessed on 21 January 2014).
  13. Sima, S.; Ahmadalipour, A.; Tajrishy, M. Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation. Remote Sens. Environ. 2013, 136, 374-385.
  14. Ghaheri, M.; Baghal-Vayjooee, M.; Naziri, J. Lake Urmia, Iran: A summary review. Int. J. Salt Lake Res. 1999, 8, 19-22.
  15. Ridd, M.K.; Liu, J. A comparison of four algorithms for change detection in an urban environment. Remote Sens. Environ. 1998, 63, 95-100.
  16. Chavez, P.S., Jr. Image-based atmospheric corrections—Revisited and improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025-1036.
  17. Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385-396.
  18. Shen, L.; Li, C. Water Body Extraction from Landsat ETM+ Imagery Using Adaboost Algorithm. In Proceedings of 18th International Conference on Geoinformatics, 18-20 June 2010, Beijing, China; pp. 1-4.
  19. Jain, S. K., Saraf, A. K., Goswami, A., & Ahmad, T. (2006). Flood inundation mapping using NOAA AVHRR data. Water Resources Management, 20, 949-959.
  20. McFeeters, S. K. (1996). The use of Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17,1425-1432
  21. Rogers, A. S., & Kearney, M. S. (2004). Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices. International Journal of Remote Sensing, 25, 2317-2335.
  22. Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27, 3025-3033.
  23. Sivanpillai, R.; Miller, S.N. Improvements in MappingWater Bodies Using ASTER Data. Ecol. Inform. 2010, 5,
  24. Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface Water Extent Dynamics from Three Decades of Seasonally Continuous Landsat Time Series at Subcontinental Scale in a Semi-Arid Region
  25. Sun, F.; Zhao, Y.; Gong, P.; Ma, R.; Dai, Y. Monitoring Dynamic Changes of Global Land Cover Types:Fluctuations of Major Lakes in China Every 8 days during 2000-2010. Chin. Sci. Bull. 2014, 59, 171-189.
  26. Tulbure, M.G.; Broich, M. Spatiotemporal Dynamic of Surface Water Bodies Using Landsat Time-Series Datafrom 1999 to 2011. ISPRS J. Photogramm. Remote Sens. 2013, 79, 44-52.
  27. McIver, D.K.; Friedl, M.A. Using Prior Probabilities in Decision-Tree Classification of Remotely Sensed Data.Remote Sens. Environ. 2002, 81, 253-261.
  28. McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425-1432
  29. Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025-3033.
  30. Davranche, A., Lefebvre, G., &Poulin, B. (2010). Wetland monitoring using classificationtrees and SPOT-5 seasonal time series. Remote Sensing of Environment, 114, 552-562.
  31. Duan, Z., &Bastiaanssen, W. G. M. (2013). Estimating water volume variations in lakesand reservoirs from four operational satellite altimetry databases and satellite imag-ery data. Remote Sensing of Environment, 134, 403-416.
  32. Hui, F., Xu, B., Huang, H., Yu, Q., & Gong, P. (2008). Modelling spatial-temporal change ofPoyang Lake using multitemporal Landsat imagery. International Journal of RemoteSensing, 29, 5767-5784.
  33. Poulin, B., Davranche, A., & Lefebvre, G. (2010). Ecological assessment of Phragmitesaustralis wetlands using multi-season SPOT-5 scenes. Remote Sensing of Environment,114, 1602-1609.
  34. Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385-396.
  35. Shen, L.; Li, C. Water Body Extraction from Landsat ETM+ Imagery Using Adaboost Algorithm. In Proceedings of 18th International Conference on Geoinformatics, 18-20 June 2010, Beijing, China; pp. 1-4.
  36. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS (Earth Resources Technology Satellite). In Proceedings of Third Earth Resources Technology Satellite Symposium, Greenbelt, ON, Canada, 10-14 December 1973; Volume SP-351, pp. 309-317.
  37. Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23-35.

Publication Details

Published in : Volume 4 | Issue 4 | March-April 2018
Date of Publication : 2018-04-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 498-512
Manuscript Number : IJSRSET1844120
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

D. Nandi, R. Chowdhury, J. Mohapatra, K. Mohanta, D. Ray, " Automatic Delineation of Water Bodies Using Multiple Spectral Indices, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 4, pp.498-512, March-April-2018.
Journal URL : http://ijsrset.com/IJSRSET1844120

Article Preview

Follow Us

Contact Us