Arima Analysis of Ferroelectric Lithium Niobate (LiNbO3) THIN Films

Authors

  • Muhammad Nur Aidi  Departmten of Statistics, Faculty of Mathematics and Natural Sciences Bogor Agricultural University,Kampus IPB Dramaga Bogor Indonesia 16680
  • Ardian Arif Setiawan  Departmten of Physics, Faculty of Mathematics and Natural Sciences Bogor Agricultural University, Kampus IPB Dramaga Bogor Indonesia 16680
  • Mahfuddin Zuhri  Departmten of Physics, Faculty of Mathematics and Natural Sciences Bogor Agricultural University, Kampus IPB Dramaga Bogor Indonesia 16680
  • Husin Alatas  Departmten of Physics, Faculty of Mathematics and Natural Sciences Bogor Agricultural University, Kampus IPB Dramaga Bogor Indonesia 16680
  • Irzaman  

Keywords:

RIMA, Fourier Transform Infrared, X-Ray Diffraction, LiNbO3, Lanthanum oxide

Abstract

Studying atomic and molecular structure of LiNbO3 are very important in order to studying the LiNbO3 character itself. ARIMA model could be used to analyzed. The research result showed that FTIR and XRD value on the heated LiNbO3 thin films could be modelled well by ARIMA.ARIMA models for Lanthanum Oxide (0 %, 5%, 10 %) doped Lithium Niobate were high accuracy models, since R2 exceeds than 80 % (99 %, 98 %, 99 % for FTIR data and 90 %, 89 %, 87 % for XRD data), all ARIMA model parameters were significant, and predicted data from ARIMA model followed behaviour actual data. FTIR data on Lanthanum Oxide (0%, 5%, 10%) Doped Lithium Niobate could be well predicted by ARIMA (3,0,0) with the equation models are , , , respectively. XRD data on Lanthanum Oxide (0%) Doped Lithium Niobate could be well predicted by ARIMA (4,0,0) with the equation model are and XRD data on Lanthanum Oxide (5%, 10 %) Doped Lithium Niobate could be well predicted by ARIMA (3,0,0) with the equation models are respectively.ARIMA model l for FTIR data is more accurate than ARIMA model for XRD data, since R2 of ARIMA model of FTIR data is greater than R2 of ARIMA model of XRD data and MAPE of ARIMA model of FTIR data is lower than MAPE of of ARIMA model of XRD data. Lanthanum oxide doped to Lithium Niobate Increasing of FTIR value that indicated adding Lanthanum Oxide to Lithium Niobate (LiNbO3) can increase absorbing of LiNbO3 and has lowered the XRD that indicated parameter hints of LiNbO3 decreases which influenced by the radius of its contituuent ions

References

  1. Irzaman, Y. Darvina, A. Fuad, P. Arifin, M. Budiman, and M. Barmawi. Physical and Pyroelectric Properties of Tantalum Oxide Doped Lead Zirconium Titanate [Pb0.9950(Zr0.525Ti0.465Ta0.010)O3] Thin Films and Its Application for IR Sensor. Physica Status Solidi (a), Germany, 199 (3), 416 – 424, 2003.
  2. Irzaman, H. Syafutra, E. Rancasa, A. Wahidin Nuayi, Tb. Gamma Nur Rahman, N. Aisyah Nuzulia, I. Supu, Sugianto, F. Tumimomor, Surianty, O. Muzikarno, and Masrur. The Effect of BaSr Ratio on Electrical and Optical Properties of BaxSr(1-x)TiO3 (x = 0.25; 0.35; 0.45; 0.55) Thin Film Semiconductor. Ferroelectrics. 445 (1) : 4-17, 2013.
  3. Irzaman, Ridwan Siskandar, Aminullah, Irmansyah, and Husin Alatas. Characterization of Ba0,55Sr0.45TiO3 Films As Light And Temperature Sensors And Its Implementation on Automatic Drying System Model. Integrated Ferroelectrics. 168 (1), 130-150, 2016.
  4. Irzaman, Y. Pebriyanto, E. Rosidah Apipah, I. Noor, A. Alkadri. Characterization of Optical and Structural of Lanthanum Doped LiTaO3 Thin Films. Integrated Ferroelectrics. 167(1), 137-145, 2015.
  5. Irzaman, Henni Sitompul, Masitoh, Mohammad Misbakhusshudur and Mursyidah. Optical and Structural Properties of Lanthanum Doped Lithium Niobate Thin Films. Ferroelectrics. 502 (1), 9-18, 2016.
  6. Wu, N.J, Y.S. Chen, S. Dorderic, A. Ignatiev. Pyroelectric IR Sensor Based on Oxide Heterostructures on Si (100) and LaAlO3 (100) Substrates.Proceeding Third International Conference on Thin Film Physiscs and Applications. SPIE Vol. 3175, page 256 – 261.
  7. Lee, B.T, W.D. Kim, K.H. Lee, H.J. Lim, C.S. Kang, H. Hideki. Electrical Properties of Sputtered BST Thin Films Prepared by Two Step Deposition Method. Journal of electronic Materials. 28 (4), L9 – L12, 1999.
  8. Itskovsky. M.A. Kinetics of Ferroelectric Phase Transition : Nonlinear Pyroelectric Effect and Ferroelectric Solar Cell. Jpn. J. Appl. Phys. 38 (8), 4812 – 4817, 1999.
  9. Whitaker, T. Focal Plane Arrays Fabricated from Compound Semiconductor Materials are at The Heart of Many Infrared Imaging Systems and Nigth Vision Cameras. Compound Semiconductor Spring II, 4 (4), 17 –23, 1998.
  10. Izuha, M., and K. Abe. Electrical Properties and Microstructure of Pt/BST/SrRuO3 Capacitors. Appl. Phys. Lett. 70 (11), 1405 – 1407, 1997.
  11. Miles. R. W. Photovoltaic solar cells; Choice of materials and production methods. Science direct, Vacuum, 80, 1090-1097, 2006.
  12. Galiana, B., I. R. Stole, M.Baudrit, I. Garcia and C. Algora. A comparative study of BSFlayers for GaAs-based single-junction or multijunction concentrator solar cells.Institute of physics publishing, Semicond, Sci. Technol, 21, 1387-1392, 2006.
  13. Shin, J.C., J. Park, C.S. Hwang and H.J. Kim. Dielectric and Electrical Properties of Sputter Grown BST Thin Films. J. Appl. Phys. 86 (1), 506 – 513, 1999.
  14. Kawakubo, T., K. Abe, S. Komatsu, K. Sano, N. Yanase and H. Mochizuki. Novel Ferroelectric Epitaxial BST Capacitor for Deep Sub Micron Memory Applications. IEEE Electron Device Letters. 18 (11), 529 – 531, 1997.
  15. Cha, S.Y., B.T. Jang and H.C. Lee. Effects of Ir Electrodes on The Dielectric Constant of BST Thin Films. Jpn. J. Appl. Phys. 38 (1A), L49 – L51, 1999.
  16. Baumert, B.A., L.H. Chang, A.T. Matsuda and C.J. Tracy. A Study of BST Thin Films for Use in bypass Capacitors. J. Mater. Res. 13 (1), 197 –204, 1998.
  17. Cheng, J.G., J. Tang and J.H. Chu. Pyroelectric Properties in Sol-Gel Derived BST Thin Films Using a Highly Diluted Precursor Solution. Appl. Phys. Lett. 77 (7), 1035 – 1037, 2000.
  18. Vargas, S., R. Arroyo, E. Hari and R. Rodriguez. Effects of Cationic Dopant on The Phase Transition Temperature of Titania Prepared by The Sol-Gel Method. J. Mater. Res., 14 (10), 3932 – 3937, 1999.
  19. Wang, F., A. Uusimaki and S. Leppavuori. BST Ferroelectric Film Prepared with Sol-Gel Process and Its Dielectric Performance in Planar Capacitor Structure. J. Mater. Res. 13 (5), 1243 – 1248, 1998.
  20. Yoon, K.H., J.H. Park and J.H. Jang. Solution Deposition Processing and Electrical Properties of Ba(Ti1-xSnx)O3 Thin Films. J. Mater. Res. 14 (7), 2933 –2939, 1999.
  21. Kim, S., T.S. Kang and J.H. Je. Structural Characterization of Laserr Alblation Epitaxial BST Thin Films on MgO (001) by Synchrotron x-Ray Scattering. J. Mater. Res., 14 (7), 2905 – 2911, 1999.
  22. Gao, Y., and S. He. Effect of Precursor and Substrate Materials on Microstructure, Dielectric Properties, and Step Coverage of BST Films Grown by Metalorganic Chemical Vapor Deposition. J. Appl. Phys. 87 (1), 124 – 132, 2000.
  23. Momose, S., T. Nakamura and K. Tachibana. Effects of Gas Phase Thermal Decompositions of Chemical Vapor Deposition Source Moleculeson The Deposition of BST Films. Jpn. J. Appl. Phys. 39 (9B), 5384 – 5388, 2000.
  24. Frutos, J., A.M. Gonzales, M.C. Duro, F. Lopez, J. Meneses, A.J. de Castro and J. Melendez. New Environmental Infrared Sensors. IEEE Electron Device Letters. 203 – 206, 1998. 
  25. Lim, S.S. M.S. Han, S.R. Hahn and S.G. Lee. Dielectric and Pyroelectric Properties of (Ba,Sr,Ca)TiO3 Ceramics for Uncolled Infrared Detectors. Jpn. J. Appl. Phys. 39 (8), 4835 – 4838, 2000.
  26. Washo, B.D. Reology and Modelling of the Spin Coating Process. IBM Res. Develop. 190 – 198, 1977. 
  27. Daughton, W.J. and F.L. Givens. An Investigation of the Thickness Variation of Spun-on Thin Films Commonly Associated with the Semiconductor Industry. J. Electrochem. Soc., 173 – 179, 1982.
  28. Meyerhofer, D. Characteristics of Resist Films Produced by Spining. J. Appl. Phys. 49 (7), 3993 – 3997, 1978.
  29. Scriven, L.E. Physics and Application Dip Coating and Spin Coating. Mat. Res. Soc. Symp. Proc. 121, 717 – 729, 1988.
  30. Walsh, C.B., and E.I. Franses. Thickness and Quality of Spin Coated Polymers Films by Two Angle Ellisopmeter. Thin Solid Films. 347, 167 – 177, 1999. 
  31. Uchino, K. Ferroelectric Devices. Marcel Dekker, Inc. New York. 23, 2000. 
  32. Ma, C, Dou A, Chen L, Li Y, Tan X, Dong P, Zhang J,Zheng L, Zhang P.A new nondestructive instrument for bulk residual stress measurement using tungsten Kα1 X-ray. Review Of Scientific Instruments. 87, 1-7, 2016.
  33. Hou, Y, Ji X, Zou L, Liu S, Su X. Performance of cement stabilized crushed brick aggregates in asphalt pavement base and subbase applications. Road Materials and Pavement Design 1-16, 2015.
  34. Dubey, S, Gubrele D, Rao R M. Standardization of Yogaamruto Rasa by Using Modern Analysis Techniques. 4, 27-23, 2016.
  35. Pawan, R, Shalini P, Sridurga C. Analytical Study of Panchshara Rasa Through XRD, SEM, EDX, and ZP. International Journal of Ayurveda and Pharma Research. 4, 35-40, 2016.
  36. Erinosho, T O, Collins D M, Wilkinson A J,Todd R I, Dunne F P E. Assessment of X-ray Diffraction and Crystal Plasticity Lattice Strain Under Biaxial Loading. International Journal of Plasticity. 1-29, 2016.
  37. Yusuf, N Y, Masdar M S, Isahak W N R W, Nordin D, Husaini T, Majlan E H, Rejab S A M, Chew C L. Ionic liquid impregated activated carbon for biohydrogen purification in an adsorption unit. IOP Conference Series: Materials Science and Engineering. 1-12, 2016.
  38. Karami, F, Khanmohammadi, Garmarudi. ATR-FTIR spectroscopy and chemometrics application for analytical and kinetics characterization of adsorption of 1-butyl mercaptan (1-butanethiol) on nickel coated carbon nanofibers (CNFS). Bulgarian Chemical Communications. 48, 51-56, 2016.
  39. Jiang, X, Li S, Xiang G, Li Q, Fan L, He L, Gu K. Determination of the acid values of edible oils via FTIR spectroscopy based on the OAH stretching band. Food Chemistry. 212, 585-589, 2016.
  40. Toon, G C, Blavier J, Sung K, Rothman L S, Gordon I E. HITRAN spectroscopy evaluation using solar occulation FTIR spectra. Journal of Quantitative Spectroscopy and Radiative Transfer. 182, 324-336, 2016.
  41. Yogaraksa, T, Hikam, M, Irzaman. Rietveld analysis of ferroelectric PbZr0.525Ti0.475O3 thin films. Ceramics International. 30, 1483–1485, 2004.
  42. Aidi, M. M, Masjkur, M, Siswadi, Pramudito, S, Arif, A, Syafutra, H, Alatas, H and Irzaman. Phase Transformation of Ba0.55Sr0.45TiO3 Tetragonal to Pseudotetragonal Structures and Arima Model for M. , N,XRD Data. International Journal of Statistic and Application. 3 (5): 19-187, 2013.
  43. Kar, S, S. Logad, O. P. Choudhary, C. Debnath, S. Verma, and K. S. Bartwal. Preparation of Lithium Niobate Nanoparticles by High Energy Ball Milling and their Characterization. Universal Journal of Material Sciences. 2, 18–24, 2013.
  44. Yue, W, and J. Y. Jian. Crystal Orientation Dependence of Piezoelectric Properties in LiNbO3 and LiTaO3. Optical Materials. 23, 403–408, 2003.
  45. Syuy, A.V, N. V. Sidorov, A. Yu, Gaponov, M. N. Palatnikov, and V. G. Efremenko, Determination of Photoelectric Fields in A Lithium Niobate Crystal by Parametersof Indicatrix of Photoinduced Scattered Radiation. Optik. 124, 5259–5261, 2013.
  46. Weidenfelder, A, J. Shi, P. Fielitz, G. Borchardt, K. D. Becker, and H. Fritze. Electrical and Electromechanical Properties of Stoichiometric Lithium Niobate at High-Temperatures. Solid State Ionics. 225, 26–29, 2012.
  47. Bornand, S, I. Huet, J. F. Bardeau, D. Chateigner, and Papet Ph. An Alternative Route for the Synthesis of Oriented LiNbO3 Thin Films. Integrated Ferroelectric. 43, 51–64, 2002.
  48. Shandilya,S, K. Sreenivas, R. S. Katiyar, and V. Gupta. Structural and Optical Studies on Texture LiNbO3 Thin Film on (0001) Sappire. Journal of Engineering and Materials Sciences. 15, 355–357, 2008.
  49. Gopalan and Venkatraman. Handbook of advanced electronic and photonic materials and devices; New York: Crystal Growth, Characterization, and Domain Studies in Lithium Niobate and Lithium. Tantalate Ferroelectrics. 2001.
  50. Cabuk, S, and A. Mamedov. A Study of the LiNbO3 and LiTaO3 Absorption Edge. Tr. J. of Physics. 22, 41–45, 1998.
  51. Yue, W, and J. Yi-jian, Crystal orientation dependence of piezoelectric propertiesin LiNbO3 and LiTaO3. Optical Materials. 23, 403–408, 2003.
  52. Wang, R, and S. A. Bhave, Free-standing high quality factor thin-film lithium Niobatemicro-photonic disk resonators. Optical Society of America. 1–6, 2014.
  53. Sadani, B, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M. P. Bernal. Enhanced electro-optical lithium Niobatephotonic crystal wire waveguide on a smart-cutthin film. Optical Society of America. 20 (3), 1–8, 2012.
  54. Kashit, I, A. A. Soliman, E. M. Sakr, and A. Ratep, Effect of Different Conventional Melt Quenching Technique on Purity of Lithium Niobate (LiNbO3) Nano Crystal Phase Formed in Lithium Borate Glass. Physics. 2, 207–211, 2012.
  55. Milz, S, J. Rensberg, C. Ronning, and W. Wesch, Correlation Between Damage Evolution, Cluster Formation and Optical Properties of Silver Implanted Lithium Niobate. Nuclear Instruments and Methods in Physics Research B. 286, 67–71, 2012.
  56. Alim, M.A, A. K. Batra, S. Bhattacharjee, and M. D. Anggarwal, Complex Capacitance in the Representation of Modulus of the Lithium Niobate Crystals. Physica B. 406, 1088–1095, 2011.
  57. Andrushchak, A.S, O. V. Yurkevych, O. A. Burry, V. S. Andrushchak, R. S. Kolodiy, I. M. Solskii, D. Calus, and A. Rusek, Spatial Anisotropy of the Linear Electro-Optic Effect in Lithium Niobate Crystals: Analytical Calculations and their experimental verification. Optical Materials. 45, 42–46, 2015.
  58. Twiefel, J and T. Morita, Utilizing Multilayer Lithium Niobate Elements for Ultrasonic Actuators. Sensors and Actuators A. 166, 78–82, 2011.
  59. Burr, G. W, S. Diziain, and M. P. Bernal, Theoretical Study of Lithium Niobate Slab Waveguides for Integrated Optics Applications. Optical Materials. 31, 1492–1497, 2009.
  60. Liu, M, and D. Xue,. Effect of Heating Rate on the Crystal Composition of Ferroelectric Lithium Niobate Crystallites. Journal of Alloys and Compounds. 427, 256–259, 2007.
  61. Bharath,S, C, K. R. Pimputkar, A. M. Pronschinske, and T. P. Pearl, Liquid CrystalDeposition on Poled, Single Crystalline Lithium Niobate. Applied Surface Science. 254, 2048–2053, 2008.
  62. Ismon, M.D.S, H. H. Kusuma, and M. R. Sudin, A Study of The Linbo3 Crystal Growth Rocess by the Czochralski Method. Proceedings Sciences and Mathematic Simposium. 1–7, 2005.
  63. Petukhov, I.V, V. I. Kichigin, A. P. Skachkov, S. S. Mushinsky, D. I. Shevtsov, and A. B. Volyntsev, Microindentation of Proton Exchange Layers on X Cut of Lithium Niobate Crystals. Materials Chemistry and Physics. 135, 493–496, 2012.
  64. Box, George; Jenkins, Gwilym (1970). Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day.
  65. Liu, K., Chen Y. and Zhang X. An Application of the Seasonal Fractional ARIMA model to the Semiconductor Manufacturing. IFAC Papers Online. 50-1,8097-8102, 2017.
  66. Sen, P, Roy M and Pal P. Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an indian pig iron manufacturing organization. Energy, 1031-1038, 2016.
  67. Zafra, C, Angel Y and Torres E. ARIMA analysis of the effect of land surface coverage on PM10 concentrations in a high-altitude megacity. Atmospheric Pollution Research, 1-9, 2017.
  68. Yuan, C, Liu S and Fang Z. Comparison of China's primary energy consumption forecasting by using ARIMA and GM model. 2016, 384-390. 2016.
  69. Jeyasekar, A, Raja SVK and Uthra RA. Congestion Avoidance Algorithm Using ARIMA Model-Based RTT in Heterogeneous Wired-Wireless Networks. Journal of Network and Computer Application. 1-42, 2016.
  70. Oliveira, PJ, Steffen JL and Cheung P. Parameter Estimation of Seasonal Arima Models for Water Demand FOrecasting using the Harmony Search Algorithm Procedia Engineering, Vol. 186, 177-185, 2017.
  71. Koutroumanidis, T, Ioannou K, Arabatzis Garyfallos. Predicting fuelwood pricesin Greece with the use of ARIMA models, artificial neural network and hybrid ARIMA-ANN model. Energy Policy. 37, 3627-3634, 2009
  72. Qin, M, Li Z. and Du Z. Red tide time series forecasting by combining ARIMA. Knowledge-Based Systems, 1-24, 2017.

Downloads

Published

2018-04-30

Issue

Section

Research Articles

How to Cite

[1]
Muhammad Nur Aidi, Ardian Arif Setiawan, Mahfuddin Zuhri, Husin Alatas, Irzaman, " Arima Analysis of Ferroelectric Lithium Niobate (LiNbO3) THIN Films , International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 4, pp.823-848, March-April-2018.