The spectroscopic (FTIR, FT-Raman, and NMR) analysis, first-order hyperpolarizability, magnetic susceptibility and HOMO–LUMO analysis of 3-(4-Methylphenyl)-2-phenyl-5-(thiophene-2-ylmethylidene)-2, 5-dihydro-1,2,4-triazin-6(1H)-one

Authors

  • M. Murali  Department of Physics, CARE Group of Institutions, Tiruchirappalli, Tamil Nadu, India
  • Dr. V. Balachandran  Centre for Research, Department of Physics, A A Government Arts College, Musiri, Tiruchirapalli, Tamil Nadu, India
  • Dr. B. Narayana  Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Konaje, Karnataka, India

Keywords:

FT-IR, FT-Raman, NBO, Mulliken, Fukui Function, NMR, Magnetic Susceptibility

Abstract

A novel molecule, thiophene derivative 3-(4-Methylphenyl)-2-phenyl-5-(thiophen-2-ylmethylidene)-2,5-dihydro-1,2,4-triazin-6(1H)-one has conveniently synthesized and characterized through FT-IR, FT-Raman, NMR spectroscopic studies. Optimized geometrical parameters, like bond lengths and bond angles, and vibrational frequencies have performed with DFT/B3LYP method using 6-31G and 6-311G basis sets using the Gaussian 09W program package. The calculated harmonic vibrational frequencies have been compared with experimental FT-IR and FT- Raman spectra. The observed and calculated frequencies are found to be in good agreement. In addition, Mulliken atomic charges, local reactivity descriptors such as local softness (sk), Fukui function (fk), global electrophilicity and nucleophilicity of the title compound were calculated and discussed. The stability and charge delocalization of the molecule were studied by Natural Bond Orbital (NBO) analysis. The overlapping of atomic orbital along with their predicted energy was explained on the basis of HOMO-LUMO energy gap calculations. Molecular Electrostatic Potential (MEP) map has been studied for predicting the reactive sites. Magnetic susceptibility has been determined for various range of temperature. 1H and 13C Nuclear Magnetic Resonance (NMR) isotropic chemical shifts are evaluated experimentally.

References

  1. GK. Gribble, M.G. Saulnier, M.P. Sibi, J.A. Obaza-Nutaitis, synthesis and Diels-Alder reactions of 1, 3-dimethyl-4-(phenylsulfonyl)-4H-furo [3, 4-b] indole. A new annulation strategy for the construction of ellipticine and isoellipticine, J. Org.chem. 49 (1984) 4518 – 4523.
  2. Press, J.B. Pharmacologically active compounds and other thiophene derivatives. In: Gronowitz S (ed), Chemistry of Hetero Cyclic Compounds: Thiophene and its derivatives, Pt, 1. Vol 44; John Wiley, New York, (1985) pp, 353 - 456.
  3. J B. Press, Chemistry of heterocyclic compounds, in: S. Gronowitz (Ed.), Thiophene and its Derivatives, Part 4, Vol. 44, Wiley, New York, 1991, pp, 397-502.
  4. IF. Perepichka, D.F. Perepichka (Eds). Handbook of thiophene-based materials, Wiley Chichester, U.K., 2009.
  5. A Mishra, C.-Q. Ma, P. Bauerle, Fucntional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications, Chem. Rev. 109 (2009) 1141- 1276
  6. Patel, R.V.; Kumari, P.; Rajani, D.P.; Pannecouque, C.; de Clercq, E.; Chikhalia, K.H. Antimicrobial, anti-TB, anticancer and anti-HIV evaluation of nefw s-triazine-based heterocycles. Future Med. Chem. 2012, 4, 1053-1065.
  7. Khoshneviszadeh, M.; Mohammad, H.; Foroumadi, G.A.; Miri, R.; Firuzi, O.; Madadkar- Sobahani, A.; Edraki, N.; Parsa, M.; Shafiee, A. Design, synthesis and biological evaluation of novel anti-cytokine 1,2,4-tirazine derivatives. Bioorg. Med. Chem. 2013, 21, 6708-6717.
  8. Gussian 09, Revision D.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C.Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wal ngford CT, 2013.
  9. A Irfan, R. Jin, A.G. Al-Sehemi, A.M. Asiri, Spectrochim. Acta 110 (2013) 60.
  10. A. Irfan, A.G. Al-Sehemi, M.S. Al-Assiri, J. Fluor. Chem. 157 (2014) 52.
  11. J.B. Foresman, in: E. Frisch (Ed.), Exploring chemistry with Electronic Structure methods: A Guide to Using Gaussian, Pittsburg, PA, 1996.
  12. J.J. Nie, D.J. Xu, J. Chinese, Struct. Chem. 21 (2002) 165-167.
  13. H.S. Chen, Z.M. Li. X.P.Yang, H.G. Wang, X.K. Yao, Chin. J. Struct. Chem. 19 (2000) 317-325.
  14. M. Kaur, Y.S. Mary, C.Y. Panicker, H.T. Varghese, H.S. Yathirajan, K. Byrappa, C. Van Alsenoy, Spectrochim. Acta A 120 (2014) 445-455.
  15. A. Cravino, H. Neugebauer, S. Luzzati, M. Catellani, N.S. Sariciftci. J. Phys. Chem. 105B (2001) 46-52.
  16. R.M. Silverstein, G.C. Bassler, T.C. Morril, Spectrometric identification of Organic Compounds, fifth ed., John Wiley and Sons, Inc., Singapore, 1991.
  17. S. Genc, N. Dege, A. Cetin, A. Cansiz, M. Sekerci, M. Dincer, Acta Cryst. E60 (2004) 1340-1340.
  18. F.R. Dollish, W.G. Fateley, F.F. Benteley, Characteristic Raman Frequencies of Organic Compounds, Wiley, New York (1997).
  19. G. Varasanyi, Vibrational Spectra of Benzene Derivatives, Academic Press, New York, 1969.
  20. M. Pagannone, B. Formari, G. Mattel, Spectrochim. Acta A 43 (1986) 621-625.
  21. N.P.G. Roeges, A Guide to the Complete Interpretation of IR Spectra of Organic compounds, Wiley, New York, 1994.
  22. R. Ustabas, N. Suleymanoglu, H. Tanak, Y.B. Alpaslan, Y. Unver, K. Sancak, J. Mol. Struct. 984 (2010) 137-145.
  23. A. Siweek, M. Wujec, I. Wawrzycka-Gorczyca, M. Dobosz, P. Paneth, Heteroat. Chem. 19 (2008) 337-344.
  24. Y. Unver, K. Sancak, H. Tanak, D. Degirmencioglu, E. Dugdu, M. Er. S. Isik. J. Mol. Struct. 936 (2009) 46-55.
  25. N. Suleymanoglu, R. Ustabas, Y.B. Alpaslan, Y. Unver, M. Turan, K. Sancak, J. Mol. Struct. 989 (2011) 101-108.
  26. D. Lin-vien, N.B. Colthup, W.G. Fately, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic frequencies of Organic Molecules, Academic Press Limited, London, 1991.
  27. C.Y. Panicker, M.R. Anoop, P.S. Binil, Y.S. Mary, H.T. Varghese, T.K. Manojkumar, Int. J. Ind. Chem. 2 (2011) 33-44.
  28. P.S. Binil, M.R. Anoop, Y.S. Mary, H.T. Varghese, C.Y. Panicker, S. Suma, M.R. Sudarsanakumar, Int. J. Ind. Chem. 2 (2011) 1-11.
  29. N.A. Mangalam, C.Y. Panicker, S.R. Sheeja, M.R.P. Kurup, Y.S. Mary, K. Raju, H.T. Varghese, V.M. Nair, Int. J. Ind. Chem. 1 (2010) 17-28.
  30. G. Socrates, Infrared Characteristic Group Frequencies, John Wiley and Sons, New York, 1981.
  31. K. Nakanishi, Infrared Absorption Spectroscopy Practical, Holden-Day, San Francisco, 1962.
  32. Y.R. Sharma, Elementary organic spectroscopy principles and chemical applications, S. Chand and Company Ltd., New Delhi, (1994).
  33. N.B. Colthup, I.H. Daly, S.E. Wiberly, Introduction to Infrared and Raman Spectroscopy, third ed., Academic Press, Boston, 1990.
  34. C. Crak, Y. Sert, F. Ucun, Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide, Spectrochim. Acta A 113 (2013) 130-136.
  35. V. Arjunan, R. Santhanam, S. Sakiladevi, M.K. Marchewka, S. Mohan, Synthesis and characterization of an anticoagulant 4-hydroxy-1-thiocoumarin by FTIR, FT-Raman, NMR, DFT, NBO and HOMO-LUMO analysis, J. Mol. Struct. 1037 (2013) 305-316.
  36. G. Socrates, Infrared and Raman Characteristic Group Frequencies, Tables and Charts, third ed., John Wiley, Chichester, 2001.
  37. A. Coruh, F. Yilmaz, B. Sengez, M. Kurt, M. Cinar, M. Karabacak, Synthesis, molecular conformation, vibrational, electronic transition and chemical shift assignments of 4-(thiophene-3-ylmethoxy) phthalonitrile: A combined experimental and theoretical analysis, Struct. Chem. 22 (2011) 45-56.
  38. M. Karabacak, S. Bilgili, T. Mavis, M. Eskici, A. Atac, Molecular structure, spectroscopic characterization (FT-IR, FT-Raman, UV and NMR), HOMO and LUMO analysis of 3-ethynylthiophene with DFT quantum chemical calculations, Spectrochim. Acta A 115 (2013) 709e718.
  39. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley-Blackwell, New York, 1976.
  40. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons, New York, 1976.
  41. J. Aihara, J. Phys. Chem. 103A (1999) 7487.
  42. C.G. Zhan, J.A. Nochols, D.A. Dixon, J. Phys. Chem. 107A (2003) 4184.
  43. R.G. Parr, L.V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922.
  44. M. Elango , R. Parthasarathi , G. Karthik Narayanan , A. MD. Sabeelullah , U. Sarkar, N. S. Venkatasubramaniyan , V. Subramanian and P. K. Chattaraj, J. Chem. Sci., Vol. 117, No. 1, (2005), pp. 61–65.
  45. F.J. Luque, J.M. Lopez, M. Orosco, Theor. Chem. Acc. 103 (2000) 343.
  46. H.Kobinyi, G. Folkers, Y.C. Martin, 3D QSAR in Drug Design, Recent Advances, vol. 3, Kluwer Academic Publishers, 1998.
  47. M. Szafran, A. Komasa, E.D. Adamaska, J. Mol. Struct. Theochem. 827 (2007) 101-107.
  48. L. Rajith, A.K. Jissy, K.G. Kumar, A. Datta, J. Phys. Chem. C115 (2011) (1864) 21858-21864.
  49. A.E. Reed, L.A. Curtis, F.A. Weinhold, Chem. Rev. 88 (1988) 899-926.
  50. P.V. Kolinzky, Opt. Eng. 31 (1992) 1676-1684.
  51. D.F. Eaton, Science 253 (1991) 281-287.
  52. N. Sundaraganesan, E. Kavitha, S. Sebastian, J.P. Cornard, M. Martel, Spectrochemica Acta A, 74 (2009) 788-797.
  53. H. Alyar, Z. Kantarci, M. Bahat, E. Kasap. J. Mol. Struc. 834-836 (2007) 516-520.
  54. K.I. Jayalakshmi, B.T. Gowda, Z. Naturforsch. 59 (2004) 491-500.
  55. B.T. Gowda, S. Foro, H. Fuess, Acta Cryst. 63 (2007) 2338.
  56. E. Pretsch, P. Buhlmann, C. Affolter Struct, Determination of Organic Compounds, Springer-Verlag, Berlin Heidelberg New York, 2000.
  57. A. R. Choudhury, T.N. Guru Row, Acta Cryst. 60 (2004) 1595-1597.
  58. Z.Liu, Y. Au, M. Tan, H. Zhu, Acta Cryst. 60 (2004) 1310-1311.
  59. R.G. Parr, W. Yang, Functional Theory of Atoms and Molecules, Oxford University Press, New York, (1989).
  60. P.W. Ayers, R.G. Parr, J. Am. Chem. Soc. 122 (2000) 2010-2018.
  61. R. G. Parr, W.J. Yang, Am. Chem. Soc. 106 (1984) 511-513.
  62. P.K. Chattaraj, B. Maiti, U. Sarkar, J. Phys. Chem, A 107 (2003) 4973-4975.
  63. C. Morell, A. Grand, A. Toro-Labbe, J. Phys. Chem. A 109 (2005) 205-212.
  64. R.S. Mulliken, J. Chem. Phys. 23 (1955) 1833-1840.
  65. M.C. Gupta, Atomic and Molecular Spectroscopy, New Age International Private Limited Publishers, New Delhi, (2001).

Downloads

Published

2018-04-30

Issue

Section

Research Articles

How to Cite

[1]
M. Murali, Dr. V. Balachandran, Dr. B. Narayana, " The spectroscopic (FTIR, FT-Raman, and NMR) analysis, first-order hyperpolarizability, magnetic susceptibility and HOMO–LUMO analysis of 3-(4-Methylphenyl)-2-phenyl-5-(thiophene-2-ylmethylidene)-2, 5-dihydro-1,2,4-triazin-6(1H)-one , International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 4, pp.1191-1214, March-April-2018.