In Vitro Biofilm Study in Tetracycline Resistant Escherichia Coli from Mastitis Samples

Authors

  • Vanishree Nisha A. R.  College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, India
  • Sanis Juliet.  College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, India
  • Suja Rani S  College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, India
  • Naicy Thomas  College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, India

Keywords:

Congo Red Dye, Coli Strains, Escherichia Coli, Vitro, MDR, EPS, Staphylococcus

Abstract

Antimicrobial resistance is a global concern in both human and veterinary medicine as there is therapeutic failure for infectious disease. Every year millions of people dying worldwide because of multiple drug resistance (MDR). Multiple drug resistant bacteria and genes can transfer between humans and animals. Transfer of MDR bacteria and genes form food producing animals to humans has great contribution in spread and occurrence of MDR. Drug resistance in mastitis producing organism is very common due to indiscriminate use of antibiotics in the treatment of mastitis. Among various resistance mechanisms biofilm formation of antibiotic resistance is gaining importance as mastitis causing organism are more prone to biofilm production due to availability of raw materials like lactose for biofilm synthesis and causing therapeutic failure. In this study biofilm is assayed by simplest method called congo red dye assay in which congo red dye is used and sucrose is added as energy source. Six tetracycline resistant E. coli strains are analysed for biofilm and all E coli isolates from mastitis milk were negative for biofilm production. E coli used in this study failed to produce biofilm may be because involvement of other resistant mechanisms like altered binding site, Efflux pump and inactivation of antibiotics by enzymes.

References

  1. Biochimie, L. De, 2005. Bacterial efflux systems and efflux pumps inhibitors 87, 1137–1147. doi:10.1016/j.biochi.2005.04.012
  2. Chakraborty, S., Dutta, T.K., Das, M., Ghosh, S., 2018. Impact of Bacterial Biofilm in Veterinary Medicine?: An Overview 7, 3228–3239.
  3. Contreras, G.A., Rodríguez, J.M., 2011. Mastitis: Comparative etiology and epidemiology. J. Mammary Gland Biol. Neoplasia 16, 339–356. doi:10.1007/s10911-011-9234-0
  4. Costa, J.C.M., Espeschit, I. de F., Pieri, F.A., Benjamin, L.A., Moreira, M.A.S., 2014. Increase in biofilm formation by Escherichia coli under conditions that mimic the mastitic mammary gland. Ciência Rural 44, 666–671. doi:10.1590/S0103-84782014000400015
  5. Dias, T., Kaiser, L., Menezes, E., Regina, K., Leonor, E., Maciel, N., Pinto, R., Paula, A., Nunes, F., 2013. Modi fi cation of the Congo red agar method to detect bio fi lm production by Staphylococcus epidermidis 75, 235–239. doi:10.1016/j.diagmicrobio.2012.11.014
  6. Gupta, P., Sarkar, S., Das, B., Bhattacharjee, S., 2016. Biofilm , pathogenesis and prevention — a journey to break the wall?: a review. Arch. Microbiol. 198, 1–15. doi:10.1007/s00203-015-1148-6
  7. Mariana, N.S., Salman, S.A., Neela, V., Zamberi, S., 2009. Evaluation of modified Congo red agar for detection of biofilm produced by clinical isolates of methicillin – resistance Staphylococcus aureus 3, 330–338.
  8. Nabi, S.U., Wani, A.R., Shah, O.S., Dey, S., Pradesh, U., Agricultural, A., 2014. Association of periodontitis and chronic kidney disease in dogs. Vet. World 7, 403–407. doi:10.14202/vetworld.2014.
  9. Naves, P., Huelves, L., Gracia, M., Ruiz, V., Blanco, J., Ponte, M.C., Soriano, F., 2008. Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent 105, 585–590. doi:10.1111/j.1365-2672.2008.03791.x
  10. Of, I, Formation, B., Typing, P., Escherichia, O.F., Strains, C., From, I., Of, M., With, C., 2015. Investigation of biofilm formation and phylogenetic typing of Escherichia coli strains isolated from milk of cows with mastitis 65, 202–216. doi:10.1515/acve-2015-0017
  11. Percival, S.L., Percival, S.L., Malic, S., Cruz, H., Williams, D.W., 2011. Introduction to Biofilms Introduction to Biofilms. doi:10.1007/978-3-642-21289-5
  12. Poole, K., 2001. Overcoming antimicrobial resistance by targeting resistance mechanisms. J. Pharm. Pharmacol. 53, 283–94. doi:10.1211/0022357011775514
  13. Sana, M., Jameel, H., Rahman, M., 2015. Miracle Remedy?: Inhibition of Bacterial Efflux Pumps by Natural Products 3. doi:10.4172/2332-0877.1000213
  14. Sharma, C., Rokana, N., Chandra, M., Singh, B.P., Gulhane, R.D., Gill, J.P.S., Ray, P., Puniya, A.K., Panwar, H., 2018. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals. Front. Vet. Sci. 4, 1–27. doi:10.3389/fvets.2017.00237
  15. Vu, B, Chen, M., Crawford, R.J., Ivanova, E.P., 2009. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14, 2535–2554. doi:10.3390/molecules14072535

Downloads

Published

2018-06-30

Issue

Section

Research Articles

How to Cite

[1]
Vanishree Nisha A. R., Sanis Juliet., Suja Rani S, Naicy Thomas, " In Vitro Biofilm Study in Tetracycline Resistant Escherichia Coli from Mastitis Samples, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 8, pp.670-673, May-June-2018.