A Review of Doped Magnesium Ferrite Nanoparticles: Introduction, Synthesis Techniques and Applications

Authors

  • Ravi Kant  Research Scholar, Department of Physics, Shri Jagdishprasad Jhabarmal Tibrewala University Jhunjhunu, Rajasthan, India
  • Ajay Kumar Mann  Department of Physics, Government College for Women, Lakhan Majra, Rohtak, Haryana, India

Keywords:

Nanoparticles, Magnesium Ferrite, Substitution, Doping.

Abstract

Nanosized spinel ferrites have been attracting considerable attention of researchers for their exciting structural, magnetic and electrical properties. The physical and chemical properties of nanomaterials have been enhanced due to their high surface to volume ratio. The curie temperature, magnetic moment, electrical resistivity and lattice constants are found to be affected by substitution in the spinel lattice and nanoparticle sizes. The present paper describes various synthesis techniques used by researchers to prepare doped (Li, Zn, Ca, Cd, Cr, Ce, Mn, Al) magnesium ferrite nanoparticles and their characteristics. Li substituted magnesium ferrite has the ability to create oxygen vacancies and dissociate water molecule on octahedrally coordinated unsaturated surface cations. With increase in Zn concentration in magnesium ferrite, the transition from ferrimagnetic to super paramagnetic is observed. It was observed that the Curie temperature was decreased with increase in Ca concentration in the ferrite. In CdxMg1-xFe2-yCryO4 ferrite, lattice constant was found to be decreasing with increase in Cr3+ concentration and increasing with increase in Cd2+ concentration. With Ce substitution, magnetic properties were changed. Ms was found first decreasing with increase in Ce3+ content and then increasing. With increase in Mn and decrease in Al content in magnesium ferrite, Ms and squareness ration (Mr / Ms) increases.

References

  1. K. Haneda, A.H. Morrish, Non collinear magnetic structure of CoFe2O4 small particles. J. Appl. Phys. 63, 4258 (1988).
  2. H. Nathani, S. Gubbala, R.D.K. Misra, Magnetic behavior of nanocrystalline nickel ferrite; part 1. The effect of surface roughness. Mater. Sci. Eng. B121. 121-126.
  3. E.J. Choi, Y. Ahn, S. Kim, D.H. An, K.U. Kang, B. Lee, K.S. Baek, H.N. Oak, Superparamagnetic relaxation in CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 262, L198-L202(2003).
  4. E.M. Chundnovsky, L. Gunther, Quantum tunneling of magnetization in small ferromagnetic particles.phys. Rev. Lett. 60, 661-668.
  5. A. Pardeep, P. Priyadharsini, G. Chandrasekaran, Sol gel route of synthesis of synthesis of nano particles of MgFe2O4 and XRD, FTIR and VSM study. J. Magn. Mag. Mater. Vol, vol. 320, no. 21, pp. 2774-2779, 2008.
  6. S.K.A.V. Ahamed, K. Sahib, M. Suganthi and C. Parkash, Study of electrical and magnetic properties in nanosized Ce-Gd doped magnesium ferrite. Int. J. Com. Appl. Vol 27, no. 5, pp. 40-45, 2011.
  7. K. A. Mohammed, A. D. Al-Rawas, A. M. Gismelseed, A. Sellai, H. M. Widatallah, A. Yousif, M. E. Elzain, M. Shongwe, Physica B 407(2012)795.
  8. P. Poddar, H. Srikanth, S.A. Morrison, E.E. Carpenter, J. Magn. Magn. Mater., 288 (2005) 443-451.
  9. N. Kikukawa, M. Takemori, Y. Nagano, M. Sugasawa, S. Kobayashi, J. Magn. Magn. Mater., 284 (2004) 206.
  10. Chen,D.; Zhang,Y.;Tu, C.: Preparation of high saturation magnetic MgFe2O4 nanoparticles bymicrowave-assisted ball milling. Mater. Lett. 82(1), 10-12 (2012).
  11. Sepelák, V.; Baabe, D.; Mienert, D.; Litterst, F.J.; Becker, K.D.: Enhanced magnetization in nano crystalline high energy milled MgFe2O4. Scr.Mater. 48(7), 961-966 (2003).
  12. Penchal Reddy,M.; Shakoor, R.A.; Mohamed, A.M.A.; Gupta, M.; Huang, Q.: Effect of sintering temperature on structural and magnetic properties of MgFe2O4 ceramic prepared by spark plasma sintering. Ceram. Int. 42(3), 4221-4227 (2016).
  13. Pradeep, A.; Priyadarshini, P.; Chandrashekaran, G.: Sol-gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J. Magn. Magn. Mater. 320(21), 2774-2779 (2008)
  14. L.B Kong., et.al, Magneto-Dielectric Properties of Mg-Cu-Co Ferrite Ceramics: II Electrical, Dielectric, and Magnetic Properties , JJ. Am. Ceram. Soc., 2007, 7, 2104-2112
  15. M. Rabanal, A. Várez, B. Levenfeld, J. Torralba, Magnetic properties of Mg-ferrite after milling process, J. Mater. Process. Technol., 143 (2003) 470-474.
  16. Q. Chen, A. J. Rondinone, B. C. Chakoumakos, Z. John Zhang, Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation, Journal of Magnetism and Magnetic Materials, 194(1) (1999) 1-7.
  17. N. Kaur, M. Kaur, Comparative studies on impact of synthesis methods on structural and magnetic properties of magnesium ferrite nanoparticles, Processing and Application of Ceramics 8(3) (2014) 137-143.
  18. J. Chandradass, A. H. Jadhav, K. H. Kim, H. Kim, Influence of processing methodology on the structural and magnetic behavior of MgFe2O4 nanopowders, Journal of Alloys and Compounds, 517 (2012) 164-169.
  19. T. Sasaki, S. Ohara, T. Naka, J. Vejpravova, V. Sechovsky, M. Umetsu, S. Takami, B. Jeyadevan, T. Adschiri, Continuous synthesis of fine MgFe2O4 nanoparticles by supercritical hydrothermal reaction, J. Supercrit. Fluids, 53(3) (2010) 92-94.
  20. Marinca TF, Chicina¸s I, Isnard O et al (2016) Nanocrystalline/nanosized manganese substituted nickel ferrites - Ni1_xMnxFe2O4 obtained by ceramic-mechanical milling route. Ceram Int 42(4):4754-4763. doi:10.1016/j.ceramint.2015.11.155
  21. Carta D, Loche D, Mountjoy G et al (2008) NiFe2O4 nanoparticles dispersed in an aerogel silica matrix: an X-ray absorption study. J Phys Chem C 112:15623-15630
  22. Mukhtar MW, Irfan M, Ahmad I et al (2015) Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications. J Magn Magn Mater 381:173-178
  23. Sharma R, Bansal S, Singhal S (2015) Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M D Cu, Zn, Ni and Co) in the structure. RSC Adv 5:6006-6018
  24. Jesudoss SK, Vijaya JJ, Kennedy LJ et al (2016) Studies on the efficient dual performance of Mn1-xNixFe2O4 spinel nanoparticles in photodegradation and antibacterial activity. J Photochem Photobiol B 165:121-132. doi:10.1016/j.jphotobiol.2016.10.004
  25. Moussaoui HE, Mahfoud T, Habouti S et al (2016) Synthesis and magnetic properties of tin spinel ferrites doped manganese. J Magn Magn Mater 405:181-186
  26. Pereira C, Pereira AM, Fernandes C et al (2012) Superparamagnetic MFe2O4 (M D Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24:1496-1504
  27. Kefeni KK, Msagati TAM,Mamba BB (2017) Ferrite nanoparticles: synthesis, characterization and applications in electronic device. Mater Sci Eng B 215:37-55
  28. Pang YL, Lim S, Ong H et al (2016) Research progress on iron oxide-based magnetic materials: synthesis techniques and photocatalytic applications. Ceram Int 42:9-34
  29. Ni D, Lin Z, Xiaoling P et al (2015) Preparation and characterization of nickel-zinc ferrites by a solvothermal method. Rare Metal Mater Eng 44:2126-2131
  30. Li Z, Gao K, Han G, Wang R et al (2015) Solvothermal synthesis of MnFe2O4 colloidal nanocrystal assemblies and their magnetic and electrocatalytic properties. New J Chem 39:361-368
  31. Yin Y, Liu W, Huo N et al (2016) Synthesis of vesicle-like MgFe2O4/Graphene 3D network anode material with enhanced lithium storage performance. ACS Sustain Chem Eng. doi:10.1021/acssuschemeng.6b01949
  32. Goswami PP, Choudhury HA, Chakma S et al (2013) Sonochemical synthesis and characterization of manganese ferrite nanoparticles. Ind Eng Chem Res 52:17848-17855
  33. Kurikka JL, Shafi VPM, Ulman A et al (2004) Mixed iron_manganese oxide nanoparticles. J Phys Chem B 108:14876-14883
  34. M.K. Das, M.M. Rahman, B.M. Sonia, F.Ahmed, Md.A. Hossain, M. Rahaman, M.S. Bashar, T. Hossain, D.K. Saha and Shireen Akhter. Magnetic, Dielectric and Electrical Properties of Lithium -Magnesium Ferrites. Advanced Chemistry Letters, vol. 1, pp. 1-7, 2013.
  35. R.K. Kotnala, J. Shah, Green hydroelectrical energy source based on water dissociation by nanoporous ferrite, Int. J. Energy Res., vol 40, pp1652-1661, 2016.
  36. A.M. Gismelseed, K.A. Mohammed, A.D. Al-Rawas, A.A. Yousif, H.M. Widatallah, M.E. Elzain, Structural and magnetic studies of the Zn -substituted magnesium ferrite chromate, DOI 10.1007/s10751-013-1003-6.
  37. He Yun, X. Yang, J. Lin, Q. Lin, J. Dong, Mössbauer Spectroscopy, Structural and Magnetic Studies of Zn2+ Substituted Magnesium Ferrite Nanomaterials Prepared by Sol-Gel Method, DOI 10.1155/2015/854840.
  38. K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, Preparation, Structural and Magnetic Properties of Ca substituted Magnesium Ferrite with Composition MgCaxFe2-xO4 (x=0.00, 0.01, 0.03, 0.05, 0.07), Journal of Materials, (2014), 184340.
  39. S.A. Masti, A.K. Sharma, P.N. Vasambekar, Preparation and thermoelectric properties of Cd2+ and Cr3+ substituted magnesium ferrites, Euro. J. Appl. Eng. Sci. Res., 2014, 3(1):9-15.
  40. S.I. Ahmad, D.R. Kumar, L.A. Syed, R. Satar, S.A. Ansari, Structural, Spectroscopic and Magnetic Study of Nanocrystalline Cerium-Substituted Magnesium Ferrite, Arab. J. Sci. Eng, DOI 10.1007/s13369-016-2297-x
  41. M.F. Kuo, Y.H. Hung, J.Y. Huang, C.C. Huang, Structure and Magnetic Properties of Mn and Al Doped Magnesium Ferrite, China Steel Technical Report, No. 29, pp 44-48, 2016.
  42. Praveena K, Chen H-W, Liu H-L et al (2016) Enhanced magnetic domain relaxation frequency and low power losses in Zn2C substituted manganese ferrites potential for high frequency applications. J Magn Magn Mater 420:129-142
  43. Tanaka T, Shimazu R, Nagai H et al (2009) Preparation of spherical and uniform-sized ferrite nanoparticles with diameters between 50 and 150 nm for biomedical applications. J Magn Magn Mater 321:1417-1420
  44. Jasso-Terán RA, Cortés-Hernández DA, Sánchez-Fuentes HJ et al (2017) Synthesis, characterization and hemolysis studies of Zn(1_x)CaxFe2O4 ferrites synthesized by sol gel for hyperthermia treatment applications. J Magn Magn Mater. doi:10.1016/j.jmmm.2016.10.099
  45. Li B, Yue Z-X, Qi X-W et al (2003) High Mn content NiCuZn ferrite for multiplayer chip inductor application. Mater Sci Eng B 99:252-254
  46. Yang Q, Zhang H, Liu Y et al (2009) Microstructure and magnetic properties of microwave sintered M-type barium ferrite, for application in LTCC devices. Mater Lett 63:406-408
  47. Reddy NR, Ramana MV, Rajitha G et al (2009) Stress insensitive NiCuZn ferrite compositions for microinductor applications. Curr Appl Phys 9:317-323
  48. Falsafi F, Hashemi B, Mirzaei A et al (2017) Sm-doped cobalt ferrite nanoparticles: a novel sensing material for conductometric hydrogen leak sensor. Ceram Int 43:1029-1037. doi:10.1016/j.ceramint.2016.10.035
  49. Sandu I, Presmanes L, Alphonse P et al (2006) Nanostructured cobalt manganese ferrite thin films for gas sensor application. Thin Solid Films 495:130-133
  50. Wen T, Zhu W, Xue C et al (2014) Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@Polyaniline nanoparticles for clinical detection of creatinine. Biosens Bioelectron 56:180-185
  51. Charalampos AS, Litsardakis G (2016) Y-type hexagonal ferrites for microwave absorber and antenna applications. J Magn Magn Mater 405:54-61
  52. Dadfar MR, Ebrahimi SAS, Masoudpanah SM (2015) Sol-gel synthesis and characterization of SrFe12O19/TiO2 nanocomposites. J Supercond Nov Magn 28(1):89-94
  53. Meng P, Xiong K, Ju K (2015) Wideband and enhanced microwave absorption performance of doped barium ferrite. J Magn Magn Mater 385:407-411
  54. Zhang X-J, Wang G-S, Cao W-Q et al (2014) Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl Mater Interfaces 6:7471-7478
  55. Chang S, Kangning S, Pengfei C (2012) Microwave absorption properties of Ce-substituted M-type barium ferrite. J Magn Magn Mater 324(5):802-805
  56. Tyagi S, Baskey HB, Agarwala RC et al (2011) Development of hard/soft ferrite nanocomposite for enhanced microwave absorption. Ceram Int 37(7):2631-2641
  57. Sundararajan M, Sailaja V, Kennedy LJ, Vijaya JJ (2017) Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism. Ceram Int 43(1A):540-548. doi:10.1016/j.ceramint.2016.09.191
  58. Casbeer E, Sharma VK, Li X-Z (2012) Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep Purif Technol 87:1-14
  59. Valero-Luna C, Palomares-Sanchéz SA, Ruíz F (2016) Catalytic activity of the barium hexaferrite with H2O2/visible light irradiation for degradation of methylene blue. Catal Today 266:110-119. doi:10.1016/j.cattod.2015.08.049
  60. Kumbhar VS, Jagadale AD, Shinde NM et al (2012) Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application. Appl Surf Sci 259:39-43
  61. Bashir B, Shaheen W, Asghar M et al (2016) Copper doped manganese ferrites nanoparticles anchored on graphene nano-sheets for high performance energy storage applications. J Alloys Compd 695:881-887. doi:10.1016/j.jallcom.2016.10.183
  62. Bindu K, Sridharan K, Ajith KM et al (2016) Microwave assisted growth of stannous ferrite microcubes as electrodes for potentiometric nonenzymatic H2O2 sensor and supercapacitor applications. Electrochim Acta 217:139-149

Downloads

Published

2018-04-30

Issue

Section

Research Articles

How to Cite

[1]
Ravi Kant, Ajay Kumar Mann, " A Review of Doped Magnesium Ferrite Nanoparticles: Introduction, Synthesis Techniques and Applications, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 7, pp.646-660, March-April-2018.