Synthesis and Characterization of Lithium Perchlorate Doped PANI thin films

Authors

  • Ajay Chauhan  Physics Department, Meerut College, Meerut, Uttar Pradesh., India
  • Rajeev Rathore   Chemistry Department, Meerut College, Meerut, Uttar Pradesh, India
  • Rajbir Singh   Physics Department, Meerut College, Meerut, Uttar Pradesh, India

Keywords:

Polyaniline, Lithium perchlorate, FT-IR, Dielectric constant, Conductivity

Abstract

PANI (Polyaniline) is synthesized via chemical route based on chemical oxidative polymerization and thereafter in-situ doped with hydrochloric acid and different weight percentage of Lithium perchlorate. Thin films of Polyaniline and its different doped variant are deposited on plain soda glass and ITO conducting glass with chemical bath deposition technique. The obtained sample configurations are characterized by XRD for structural consistency, FTIR for chemical identification, DSC for thermal stability and electric measurements for capacitance and conductance are carried out with LCR and Four Probe arrangements respectively. XRD analysis reveals largely the polycrystalline nature of Polyaniline and its doped variant. FT-IR study of Polyaniline is found to be in good agreement with standard pronounced peaks in the region of 2000-3500 cm-1, a slight shifting in the doped Polyaniline is due to displaced hydrogen bonds. DSC reveals significant thermal stability of doped and undoped Polyaniline below 200 0C. Dielectric measurements in the frequency range 50 Hz - 2 MHz with variable temperature yields the variation of capacitance, that confirms the interfacial polarization in the PANI matrix. Lithium perchlorate doped PANI exhibits conductivity of 6.19 Sm-1 confirming the existence of bipolaron at higher level of oxidation.

References

  1. V.J. Babu, S. Vempati and S. Ramakrishna, (2013), Materials Sciences and Applications, Vol.4 No.1, pp 1-10 DOI:10.4236/msa.2013.41001
  2. R.K. Devi and G.Mathubala, (2015), International Journal of Innovative Research in Science, Engineering and Technology, Vol. 4, Issue 3, DOI: 10.15680/IJIRSET.2015.0403153 1432
  3. P.K. Kahol, J.C.Ho, Y.Y.Chen, C.R.Wang, S.Neeleshwar, C.B.Tsai and B.Wessling, (2005), Synthetic Metals, Volume 151, Issue 1, pp 65-72, DOI: 10.1016/j.synthmet.2005.03.017
  4. N. Çolak and B. Sökmen, (2012), Designed Monomers and Polymers, Volume 3, Issue 2, pp 181-189, DOI: 10.1163/156855500300142870
  5. V.M Mzendaa, S.A Goodmana, F.D Aureta and L.C. Prinsloob, (2002) Synthetic Metals, Volume 127, Issues 1–3, pp 279-283, DOI: 10.1016/S0379-6779(01)00636-1
  6. A. Kumar, V. Ali, S. Kumar and M. Husain, (2011), International Journal of Polymer Analysis and Characterization, Volume 16, Issue 5, pp 298-306, DOI: 10.1080/1023666X.2011.587945
  7. S. Capaccioli, M Lucchesi, P. A. Rolla and G Ruggeri, (1998), Journal of Physics: Condensed Matter, 10, pp 5595, DOI: 10.1088/0953-8984/10/25/011
  8. D. S. Maddison and T. L. Tansley, (1992), Journal of Applied Physics, 72, pp 4677, DOI: 10.1063/1.352073
  9. J.C. Chiang, A. G. MacDiarmid, (1986), Synthetic Metals, Volume 13, Issues 1–3, pp 193-205, DOI: 10.1016/0379-6779(86)90070-6
  10. A.J. Epstein, J.M.Ginder, F.Zuo, R.W.Bigelow H.-SWoo, D.B.Tanner, A.F.Richter, W.-Shuang, A.G. MacDiarmid, (1987) Synthetic Metals, Volume 18, Issues 1–3, pp 303-309, DOI: 10.1016/0379-6779(87)90896-4
  11. J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns and A.B. Holmes, (1990), Nature, volume 347, pp 539–541, DOI:10.1038/347539a0
  12. A.G. MacDiarmid and A.J. Epstein, (1989), Faraday Discussions of the Chemical Society, Volume 88, pp 317-332, DOI:10.1039/DC9898800317
  13. J. Stejskal and R.G. Gilbert, (2002), Pure and Applied Chemistry, Volume 74, No. 5, pp. 857-867, DOI: 10.1351/pac200274050857
  14. N. Chandrakanthi and M.A. Careem, (2000), Polymer Bulletin, Volume 44, Issue 1, pp 101–108, DOI: 10.1007/s002890050579
  15. G.B. Shumaila, V.S. Lakshmi, M. Alam, A.M. Siddiqui, M. Zulfequar and M. Husain, (2010), Current Applied Physics, Volume 11, No. 2,pp. 217-222, DOI: 10.1016/j.cap.2010.07.010
  16. K. Gupta, P.C. Jana and A.K. Meikap, (2010), Synthetic Metals, Volume 160, No. 13-14, pp. 1566-1573, DOI: 10.1016/j.synthmet.2010.05.026
  17. J. Fink and G. Leising, (1986), Physical Review B, 34, pp 5320, DOI: 10.1103/PhysRevB.34.5320
  18. J.Jooa, H.G.Songb, C.K.Jeongb, J.S.Baeckb, J.K.Leeb, and K.S.Ryuc, (1999) Synthetic Metals, Volume 98, Issue 3, P 215-220, DOI: 10.1016/S0379-6779(98)00193-3
  19. S. Bhadra and D. Khastgir (2008), Polymer Test 27(7), pp 851-857, DOI: 101016/j.polymertesting.2008.07.002
  20. A. Choudhury, (2009), Sensors and Actuators B: Chemical, Volume 138, Issue 1, pp 318-325, DOI: 10.1016/j.snb.2009.01.019
  21. A. AliKhan and U. Baig, (2013), Solid State Sciences, Volume 15, pp 47-52, DOI: 10.1016/j.solidstatesciences.2012.08.032

Downloads

Published

2018-03-30

Issue

Section

Research Articles

How to Cite

[1]
Ajay Chauhan, Rajeev Rathore , Rajbir Singh , " Synthesis and Characterization of Lithium Perchlorate Doped PANI thin films, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 4, pp.1412-1417, March-April-2018.