Robust Geographically Weighted Regression Modeling using Least Absolute Deviation and M-Estimator

Authors(3) :-Puteri Pekerti Wulandari, Anik Djuraidah, Aji Hamim Wigena

Geographically weighted regression (GWR) is development of multiple regression that has spatial varying, so that the estimator of GWR is different for each location. Parameter estimation in GWR uses weighted least square method which is vulnerable to outlier and can cause biased parameter estimation. The robust GWR (RGWR) with LAD and M-estimator is resistance to outliers. This research estimated parameters on RGWR using LAD and M-estimator method and uses data of Java gross domestic product (GRDP) in 2015 containing several outliers. The result showed that RGWR model was better than GWR with M-estimator, and the predictions were closer to the actual values.

Authors and Affiliations

Puteri Pekerti Wulandari
Department of Statistics, Bogor Agricultural University, Bogor, West Java, Indonesia
Anik Djuraidah
Department of Statistics, Bogor Agricultural University, Bogor, West Java, Indonesia
Aji Hamim Wigena
Department of Statistics, Bogor Agricultural University, Bogor, West Java, Indonesia

Geographically Weighted Regression, Least Absolute Deviation, M-Estimator

  1. A. B. Author, “Title of chapter in the book,” in Title of His Published Book, xth ed. City of Publisher, Country if not
  2. Afifah R. 2017. Robust Geographically Weighted Regression with Least Absolute Deviation Method in Case of Poverty in Java Island. 1827(1):020023. doi: 10.1063/14979439.
  3. Anselin L. 1988. Spatial Econometrics: Method and Models. Kluwer Academic Publisher. The Netherlands.
  4. Azizah RI. 2015. Pendugaan Parameter Model Dinamik Dengan Metode Median Absolute Deviation dan Bisquare M-Estimation [Skripsi]. Bogor : Institut Pertanian Bogor.
  5. [BI] Bank Indonesia. 2015. Metadata : Produk Domestik Regional Bruto (PDRB). Jakarta : Bank Indonesia.
  6. Chen C. 2002. Robust Regression and Outlier Detection with ROBUSTREG Procedurer. SAS Institute Inc.
  7. Fatulloh. 2013. Penerapan Regresi Terboboti Geografis Untuk Data Produk Domestik Regional Bruto [Skripsi]. Bogor : Institut Pertanian Bogor.
  8. Fotheringham AS, Charlton M, Brundon C. 2002. Geographically Weighted Regression. Chicester, UK: John Wiley and Sons.
  9. Handayani LMW. 2017. Penerapan Regresi Panel Terboboti Geografis Pada Produk Domestik Regional Bruto Di Jawa Tengah Tahun 2011-2015 [Tesis]. Bogor : Institut Pertanian Bogor.
  10. Mutan OC. 2009. A Monte Carlo Comparison of Regression Estimators When the Error Distribution is Long Tailed Symmetric. Journal of Modern Applied Statistical Methods. 8(1): 161-172. doi: 10.22237/jmasm/1241136780.
  11. Sari RA., Wijayanto H., Indahwati. 2016. Perbandingan Beberapa Metode Kekar Pada Pendugaan Parameter Regresi Linier Sederhana Untuk Data yang mengandung Pecilan [Skripsi]. Bogor : Institut Pertanian Bogor.
  12. Zhang H, Mei C. 2011. Local Least Absolute Deviation Estimation of Spatially Varying Coefficient Models: Robust Geographically Weighted Regression Approaches. International Journal of Geographical Information Science. 25(9):1467-1489. doi: 10.1080/13658816.2010.528420.

Publication Details

Published in : Volume 6 | Issue 1 | January-February 2019
Date of Publication : 2019-02-28
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 238-245
Manuscript Number : IJSRSET196123
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Puteri Pekerti Wulandari, Anik Djuraidah, Aji Hamim Wigena, " Robust Geographically Weighted Regression Modeling using Least Absolute Deviation and M-Estimator, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 6, Issue 1, pp.238-245, January-February-2019. Available at doi : https://doi.org/10.32628/IJSRSET196123
Journal URL : http://ijsrset.com/IJSRSET196123

Article Preview