Nonstationary EBLUP on Prediction of Poverty Rate at Village Level in Lembata Regency

Authors(3) :-Riza Ghaniswati, Asep Saefuddin, Anang Kurnia

The village development program requires accurate village level data, such as the poverty rate. However data poverty rate in Indonesia can only be obtained at the regency/municipality level. An analysis technique to overcome this problem is Small Area Estimation (SAE). SAE model related to poverty rate must be able to produce an estimated proportion that is in the interval of 0 and 1. One approach that can be done is to use logit transformation. The purpose of this study was to estimate the poverty rate at village level in Lembata Regency, Nusa Tenggara Timur Province. This estimation was done by comparing the Empirical Best Linear Unbiased Prediction (EBLUP), Spatial Empirical Best Linear Unbiased Prediction (SEBLUP), and Nonstationary Empirical Best Linear Unbiased Prediction (NSEBLUP). The results showed that logit transformations produced estimates between 0 and 1. The best method to estimate poverty rate at village level in Lembata Regency was NSEBLUP, which produced estimation that more precise than EBLUP and SEBLUP.

Authors and Affiliations

Riza Ghaniswati
Statistics Indonesia, Jakarta, Indonesia
Asep Saefuddin
Department of Statistic, Bogor Agricultural University, Bogor, Indonesia
Anang Kurnia
Department of Statistic, Bogor Agricultural University, Bogor, Indonesia

Poverty, Small Area, Spatial, Village

  1. Aminah AS. 2017. Penerapan Metode Spatial Empirical Best Linear Unbiased Prediction Dengan Prosedur Restricted Maximum Likelihood Dan Bootstrap Untuk Estimasi Persentase Penduduk Miskin Tingkat Kecamatan Di Kabupaten Wonosobo. [Thesis]. Bandung (ID): Padjadjaran University.
  2. Baum CF. 2008. Modeling Proportion. The Stata Journal. 2: 299-303.
  3. [BPS] Statistics Indonesia. 2017. Data dan Informasi Kemiskinan Kabupaten/Kota Tahun 2017. Jakarta (ID): Statistics Indonesia.
  4. Chandra H, Salvati N, UC Sud. 2011. Disaggregate Level Estimates of Indebtedness in the State of Uttar Pradesh in India: an Application of Small-Area Estimation Technique. Journal of Applied Statistics. 38: 2413-2432.
  5. Chandra H, Salvati N, Chambers R, Tzavidis N. 2012. Small Area Estimation Under Nonstationary Spatial. Journal of Computational and Data Analysis. 56: 2875-2888.
  6. Chandra H. 2013. Exploring Spatial Dependence in Area-Level Random Effect Models for Disaggregate-Level Crop Yield Estimation. Journal of Applied Statistics. 40: 823-842.
  7. Chandra H, Salvati N, Chambers R. 2015. A Spatially N onstationary Fay-Herriot Model f or Small Area Estimation. Journal of Statistics and Methodology Survey. 3: 109-135.
  8. Cox DR, Snell EJ. 2002. Analysis of Binary Data Second Edition. USA: Chapman and Hall
  9. Fotheringham AS, Brunsdon C, Charlton M. 2002. Geographically Weighted Regression. England: John Wiley and Sons.
  10. Jumiartanti. 2018. Model Zero Inflated Beta Pada Pendugaan Area Kecil Untuk Menduga Proporsi Penduduk. [Thesis]. Bogor (ID): Bogor Agricultural University
  11. Kurnia A. 2009. Prediksi Terbaik Empirik untuk Model Transformasi Logaritma di dalam Pendugaan Area Kecil dengan Penerapan pada Data Susenas. [Dissertation]. Bogor (ID): Bogor Agricultural University.
  12. Pratesi M, Salvati N. 2008. Small Area Estimation: The EBLUP estimator based on spatially correlated random area effects. Stat Meth & Appl. 17: 113-141.
  13. Rao JNK, Molina I. 2015. Small Area Estimation Second Edition. New York (USA): John Wiley and Sons.
  14. Salvati N. 2004. Small Area Estimation by Spatial Models: The Spatial Empirical Best Linear Unbiased Prediction (Spatial EBLUP). [Working Paper]. Italy: University of Florence.
  15. Suhartini T. 201 5. Kajian Pendugaan Proporsi Rumah Tangga Miskin Melalui Metode Pendugaan Area Kecil (Studi Kasus Proporsi Rumah Tangga miskin di Jawa Barat. [Thesis]. Bogor (ID): Bogor Agricultural University.
  16. Sulistiyono D. 2016. Bootstrap Spatial Empirical Best Linear Unbiased Prediction untuk Pemetaan Kemiskinan Tingkat Desa di Kabupaten Pati. [Thesis]. Surabaya (ID): Sepuluh November Institute of Technology.

Publication Details

Published in : Volume 6 | Issue 1 | January-February 2019
Date of Publication : 2019-01-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 124-130
Manuscript Number : IJSRSET196137
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Riza Ghaniswati, Asep Saefuddin, Anang Kurnia, " Nonstationary EBLUP on Prediction of Poverty Rate at Village Level in Lembata Regency , International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 6, Issue 1, pp.124-130, January-February-2019. Available at doi : https://doi.org/10.32628/IJSRSET196137
Journal URL : http://ijsrset.com/IJSRSET196137

Article Preview

Follow Us

Contact Us