Modelling of GRDP the Construction Sector in Java Island Using Robust Geographically and Temporally Weighted Regression (RGTWR)

Authors(3) :-Sugi Haryanto, Muhammad Nur Aidi, Anik Djuraidah

Infrastructure development is government focus in 2015-2019. One indicator used to measure economic activities construction sector in one area is GRDP of the construction sector. The Robust Geographically and Temporally Weighted Regression (RGTWR) model is the development of GTWR model to overcome the outliers. This study used GRDP the construction sector as a response variable with population, local revenue, area, and the number of construction establishments as explanatory variables. The RGTWR model is more effective in describing the value of data GRDP the construction sector of the regencies/municipalities in Java Island in 2010-2016. This is indicated by a decrease in the value of RMSE, MAD, and MAPE. The RGTWR model with M-estimator has been able to reduce the measure goodness of fit model, even though the decrease is not too large. Some residuals the RGTWR model still detected as outlier so it is recommended to use another estimator.

Authors and Affiliations

Sugi Haryanto
Department of Statistic, Bogor Agricultural University, Bogor, Indonesia
Muhammad Nur Aidi
Department of Statistic, Bogor Agricultural University, Bogor, Indonesia
Anik Djuraidah
Department of Statistic, Bogor Agricultural University, Bogor, Indonesia

Construction, GRDP, RGTWR, Spatial, Spatiotemporal

  1. Huang, B., Wu, B., & Barry, M. (2010). Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24(3), 383-401.
  2. Fotheringham, A. S., Crespo, R., & Yao, J. (2015). Geographical and Temporal Weighted Regression (GTWR). Geographical Analysis, 47(4), 431-452.
  3. Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geographical Analysis, 28(4), 281-298.
  4. Fotheringham, A. S., & Brunsdon, C. (1999). Local Forms of Spatial Analysis. Geographical Analysis, 31(4), 343-358.
  5. Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographical Weighted Regression: The Analysis of Spatially Varying Relationship. West Sussex (EN): John Wiley & Sons Ltd,.
  6. Aisyiah, K., Sutikno, & Latra, I. N. (2014). Modeling of Dust Particle Concentration (PM10) in Air Pollution in Surabaya City with Geographically Temporally Weighted Regression Method [Pemodelan Konsentrasi Partikel Debu (PM10) pada Pencemaran Udara di Kota Surabaya dengan Metode Geographically-Temporally Weighted Regression]. Jurnal Sains dan Seni Pomits, 2(1), 152-157.
  7. Widiyanti, K. Y., Yasin, H., & Sugito. (2014). Modeling Proportions of Poor Residents Regencies and Municipalities in Central Java Province Using Geographically and Temporally Weighted Regression [Pemodelan Proporsi Penduduk Miskin Kabupaten dan Kota di Provinsi Jawa Tengah Menggunakan Geographically and Temporally Weighted Regression]. Jurnal Gaussian, 3(4), 691-700.
  8. Yasin, H., Sugito, & Prahutama, A. (2015). Analysis of Poverty Data in Central Java Using Mixed Geographically and Temporally Weighted Regressions (MGTWR) Methods [Analisis Data Kemiskinan di Jawa Tengah Menggunakan Metode Mixed Geographically and Temporally Weighted Regressions (MGTWR)]. BIAStatistics, 9(1), 15-23.
  9. Ispriyanti, D., Yasin, H., & Hoyyi, A. (2016). Modeling of NO2 Air Pollution Elements Using Geographically and Temporally Weighted Regression (GTWR) [Pemodelan Unsur Pencemar Udara NO2 Menggunakan Geographically and Temporally Weighted Regression (GTWR)]. Seminar Nasional Variansi 2016 (pp. 34-46). Makassar (ID): Universitas Negeri Makassar.
  10. Conita, & Purwaningsih, T. (2017). Under-five Mortality Rate Modeling Using Geographically and Temporal Weighted Regression (GTWR). Proceedings of 1st Ahmad Dahlan International Conference on Mathematics and Mathematics Education (pp. 59-67). Yogyakarta (ID): Universitas Ahmad Dahlan.
  11. Sholihin, M., Soleh, A. M., & Djuraidah, A. (2017). Geographically and Temporally Weighted Regression (GTWR) for Modeling Economic Growth using R. International Journal of Computer Science and Network, 6(6), 800-805.
  12. Haryanto, S., Aidi, M.N., & Djuraidah, A. (2019). Analysis of Geographically and Temporally Weighted Regression (GTWR) GRDP of the Construction Sector in Java Island. Forum Geografi, (In Review).
  13. Erda, G., Indahwati, & Djuraidah, A. (2018). A Comparison of GTWR and Robust GTWR Modelling. International Journal of Scientific Research in Science, Engineering and Technology, 4(9), 453-457.
  14. BPS. (2016). Gross Regional Domestic Product of East Java Regencies/Municipalities by Business Field 2011-2015 [Produk Domestik Regional Bruto Kabupaten/Kota Jawa Timur menurut Lapangan Usaha 2011-2015]. Surabaya (ID): Badan Pusat Statistik Provinsi Jawa Timur.
  15. Rahmattullah. (2015). The Influence of Productive Age Residents on Indonesian Economic Growth [Pengaruh Penduduk Umur Produktif terhadap Pertumbuhan Ekonomi Indonesia]. Visipena, 6(2), 68-87.
  16. Agustiana, Z. (2015). Energy Consumption and Population on the GRDP Central Java Province 1985-2012 [Konsumsi Energi, Jumlah Penduduk terhadap PDRB Provinsi Jawa Tengah Tahun 1985-2012]. Economics Development Analysis Journal, 4(4), 460-469.
  17. Astuti, W. A., Hidayat, M., & Darwin, R. (2017). Effects of Investment, Labor and Population Growth on Economic Growth in Pelalawan Regency [Pengaruh Investasi, Tenaga Kerja dan Pertumbuhan Penduduk Terhadap Pertumbuhan Ekonomi di Kabupaten Pelalawan]. Jurnal Akuntansi & Ekonomika, 7(2), 140-147.
  18. Novianto, T. F., & Atmanti, H. D. (2013). Analysis of the Effect of Local Revenue, Investment and Work Force on Central Java Province GRDP Growth in 1992-2011 [Analisis Pengaruh Pendapatan Asli Daerah, Investasi dan Angkatan Kerja terhadap Pertumbuhan PDRB Provinsi Jawa Tengah Tahun 1992-2011]. Diponegoro Journal of Economics, 2(2), 1-9.
  19. Hariyadi, E., & Yasa, I. N. (2014). Effect of Local Revenue on Regencies/Municipalities GRDP and Capital Expenditures in Bali Province [Pengaruh PAD terhadap PDRB dan Belanja Modal Kabupaten/Kota di Provinsi Bali]. E-Jurnal Ekonomi Pembangunan Universitas Udayana, 3(12), 586-593.
  20. Manek, M., & Badrudin, R. (2016). Effects of Local Revenue and Balancing Funds on Economic Growth and Poverty in East Nusa Tenggara Province [Pengaruh Pendapatan Asli Daerah dan Dana Perimbangan terhadap Pertumbuhan Ekonomi dan Kemiskinan di Provinsi Nusa Tenggara Timur]. Telaah Bisnis, 17(2), 81-98.
  21. Dardak, H. (2007). Integrated Infrastructure Development and Sustainability Based on Spatial Planning [Pembangunan Infrastruktur Secara Terpadu dan Berkelanjutan Berbasis Penataan Ruang]. Jakarta (ID): Direktorat Jendral Penataan Ruang Departemen Pekerjaan Umum.
  22. Putra, N. B. (2015). Effect of Population and Area on GRDP in Bojonegoro Regency 2010-2014 [Pengaruh Jumlah Penduduk dan Luas Wilayah terhadap PDRB di Kabupaten Bojonegoro 2010-2014]. Malang (ID): Universitas Muhammadiyah Malang.
  23. Afandi, A. G., & Soesatyo, Y. (2014). The Influence of the Processing Industry, Trade, Hotels and Restaurants, and Agriculture on the GRDP of Mojokerto Regency [Pengaruh Industri Pengolahan, Perdagangan, Hotel, dan Restoran, dan Pertanian Terhadap PDRB Kabupaten Mojokerto]. Jurnal Pendidikan Ekonomi, 2(3), 1-16.
  24. DPR. (2015). Academic Manuscript of the Construction Services Bill [Naskah Akademik Rancangan Undang-undang Jasa Konstruksi]. Retrieved March 1, 2018, from http://www.dpr.go.id/doksileg/proses1/RJ1-20150921-113904-7848.pdf.
  25. Olive, D. J. (2005). Applied Robust Statistics. Carbondile (IL): Southern Illinois University.
  26. Chen, C. (2002). Robust Regression and Detection with the Robustreg Procedure. Cary (NC): SAS Institute Inc.
  27. Huber, P. J. (1964). Robust Estimation of A Location Parameter. The Annals of Mathematical Statistics, 35(1), 73-101.
  28. Fox, J. (2002). Robust Regression: Appendix to An R and S-PLUS Companion to Applied Regression. Thousand Oaks (CA): Sage Publications.
  29. Box, G. P., & Cox, D. R. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26(2), 211-252.
  30. Osborne, J. W. (2010). Improving your data transformations: Applying the Box-Cox transformation. Practical Assessment, Research & Evaluation, 15(12), 1-9.
  31. Breusch, T. S., & Pagan, A. R. (1979). A Simple Test For Heteroscedasticity and Random Coefficient Variation. Econometrica, 47(5), 1287-1294.
  32. Moore, D. S., McCabe, G. P., & Craig, B. A. (2008). Introduction to the Introduction to the Practice of Statistics. New York (NY): W. H. Freeman and Company.
  33. Dawson, R. (2011). How Significant is a Boxplot Outlier? Journal of Statistics Education, 19(2), 1-12.
  34. Moses, L. E. (1987). Graphical Methods in Statistical Analysis. Annual Reviews Public Health, 8(1), 309-353.

Publication Details

Published in : Volume 6 | Issue 1 | January-February 2019
Date of Publication : 2019-01-31
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 165-174
Manuscript Number : IJSRSET196141
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Sugi Haryanto, Muhammad Nur Aidi, Anik Djuraidah, " Modelling of GRDP the Construction Sector in Java Island Using Robust Geographically and Temporally Weighted Regression (RGTWR), International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 6, Issue 1, pp.165-174, January-February-2019. Available at doi : https://doi.org/10.32628/IJSRSET196141
Journal URL : http://ijsrset.com/IJSRSET196141

Article Preview