Study of Electronic, Acoustical and Elastic properties of CdCe

Authors

  • Sanjay Kumar  Department of Physics, J. V. Jain College, Saharanpur, Uttar Pradesh, India

Keywords:

Elastic Properties, Electronic Structure of Metals and Alloys, Ab-Initio Calculations

Abstract

Elastic, acoustical and electronic properties of CdCe have been performed using the full-potential augmented plane-waves + local orbital (FP-LAPW + lo) method. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method within generalized gradient approximation (GGA). Young’s modulus, shear modulus, Poisson ratio, acoustical velocities for longitudinal and shear waves, Debye average velocity, Debye temperature and Grüneisen parameter have also been calculated. From electronic calculations, it has been found that electronic conductivity in CdCe is mainly caused by d-orbitals electrons of Cd with small contribution of Ce p-orbitals.

References

  1. Swanson, H. E. Mcmurdie, H. F. Morris, M. C. and Evans, E. H. National Bureau of Standards Monograph 25- Section 5 (Library of Congress Catalog Card Number: 53- 61386), Issued August 31, (1967)
  2. Peng, F. Han, Y. Fu, H. Yang, X. First-principles calculations on structure and elasticity of wurtzite-type indium nitride under pressure. J. Alloys and comp. 475, 885 (2009).
  3. Ravindran, P. Fast, L. Korzavyi, P. A. Johansson, B. Wills, J. and Eriksson, O. Density Functional Theory for Calculation of Elastic Properties of Orthorhombic Crystals: Application to TiSi2, J. Appl. Phys. 84, 4891(1998).
  4. Heciri, D. Beldi, L. Drablia, S. Meradji, H. Derradji, N. E. Belkhir, H. Bouha, B. First principles elastic constants and electronic structure of beryllium chalcogenides BeS, BeSe and BeTe. Comput. Mat. Sci. 38, 609 (2007).
  5. Blaha, P. Schwarz, K. Madson, G. K. H. Kvasnicka, D. and Luitz, J. An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Comput. Phys.Comm. 59, 399 (1990).
  6. Perdew, P. and Burke, S. Ernzerhof Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996).
  7. Perdew, J. P. Wang, Y. Accurate and Simple Analytic Representation of the Electron Gas Correlation Energy. Phys. Rev. B 45, 13244 (1992).
  8. Murnaghan, F. D. The compressibility of media under extreme pressures Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).
  9. Kalarasse, K. Kalarasse, L. Bennecer, and B. Mellouki, A. Elastic and electronic properties of Li2ZnGe. Comput. Mat. Sci. 47, 869 (2010).
  10. Bouhemadou, A. Khenata, R. Moaka?, M. Seddik, T. Reshak, A.H. and Al-Douri, Y. FP-APW+lo calculations oe elastic properties in zinc blend III-P compounds under pressure effect. Comput. Mat. Sci. 45, 474 (2009).
  11. Chen, W. and Jiang, J. Z. Elastic properties and electronic properties of 4d-and 5d-transition metal mononitrides. J. Alloys and Compounds 499, 243 (2010).
  12. Haddadi, A. Bouhemadou, A. Louail, L. Maabed, S. and Maouche, D. Structural and elastic properties under pressure effect of the cubic antiperovskite compounds ANCa3 (A = P, As, Sb, and Bi). Phys. Lett. A 373, 1777 (2009).
  13. Belomestnykh, V. N. Acoustical Grüneisen Constants of Solids. Tech. Phys. Lett. 30 (2), 91 (2004).

Downloads

Published

2018-02-25

Issue

Section

Research Articles

How to Cite

[1]
Sanjay Kumar, " Study of Electronic, Acoustical and Elastic properties of CdCe , International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 1, pp.1722-1727, January-February-2018.