Industrial Facilities for Recycling Lead Acid Batteries (LABS)

Authors

  • Panagiotis J. Charitidis  Democritus University of Thrace, Environmental Engineering School , 12 Vas. Sofias Street, Xanthi 67100, Greece
  • Savvas Symeonidis  Democritus University of Thrace, Environmental Engineering School , 12 Vas. Sofias Street, Xanthi 67100, Greece
  • Stefanos Dimitriadis  Democritus University of Thrace, Environmental Engineering School , 12 Vas. Sofias Street, Xanthi 67100, Greece
  • Christos Manolis  Democritus University of Thrace, Environmental Engineering School , 12 Vas. Sofias Street, Xanthi 67100, Greece
  • Savvas Chavianidis  Democritus University of Thrace, Environmental Engineering School , 12 Vas. Sofias Street, Xanthi 67100, Greece
  • Christos Dimitriadis  Sunlight Recycling, Maronia, Komotini 69100, Greece

DOI:

https://doi.org//10.32628/IJSRSET196444

Keywords:

Industrial, Factory, Lead, Recycling, Battery, Anti-Pollution Technology

Abstract

This document provides some minimal guidelines (and requirements) for writing a research paper. Issues related to Batteries in the modern world have become ubiquitous in large quantities, in the sense that they provide energy for a wide range of products used in all parts of everyday life, from households to large industrial enterprises that have high energy requirements. Nowadays, more and more countries, collect and recycle lead batteries. However, the recycling process is quite dangerous if not properly controlled. The appropriate design of industrial facilities will minimize the hazards of the process, allowing a smooth development of materials and services, with higher added value, at minimum cost. This paper refers to a recycling batteries facility, where three mainly sectors positively contribute to the conservation of natural resources, energy savings, as well as the reduction of toxic gases and emissions.

References

  1. European Committee of the Regions.2018. Spatial planning and governance within EU policies and legislation and their relevance to the New Urban Agenda, European Union.
  2. UNEP. 2003. Technical guidelines for the environmentally sound management of waste lead-acid batteries. Secretariat of the Basel Convention. Basel Convention series/SBC No. 2003/9. Geneva: Basel convention Secretariat. http://www.basel.int/Portals/4/Basel%20Convention/docs/pub/techguid/techwasteacid.pdf, accessed 3 January 2017.
  3. European AGM Technology-battery layout. Source: Johnson controls International.
  4. H. Lund, “The McGraw-Hill Recycling Handbook,” 2nd ed., McGraw-Hill , New York, 2001.
  5. J. Noori, R. Nabi zadeh, K.Nadafi, M. Farzad Kia, Sh. Omidi, A. Koliv, M. Binavapour. 2009. Journal of  Environmental Science and Technology. ISSN 1563-4809.
  6. M. Momeni, S. Nasseryan. 2011. Fifth Conference and Exhibition on Environmental Engineering.
  7. M. Lagrega,  P.Buckingham,  “Hazardous waste management,” 2nd edition. New York, 2001.
  8. Bloomberg New Energy Finance, Lithium-on prices falling. https://www.bloomberg.com/news/, (19 June 2018).
  9. N. K. Dervitsiotis, Operations Management, ISBN 0-07-016537-8.
  10. Cambodian Ministry of Environment, National Workshop's Report on the Inventory of Used Lead Acid Batteries in Cambodia. (May 13-14, 2004) [Online.]
  11. S. Zafar. 2016. The Problem of used lead-acid batteries, Environment, Recycling.
  12. M. D. Asadi, R. Faezi Razi, R. Nabizadeh, M. Vojdani. 1995. Environmental protection agency publications.
  13. H. Vahidi, F. Ghazban, M. A. Abduli, S. M. A. Banaei  V. Dehghani Kazemi. 2014.  Journal for  Science and Engineering.
  14. W. Zhang, J. Yang, X. Zhu, X Sun, W. Yu, Y. Hu, X. Yuan, J. Dong, J Hu, S Liang, R. V. Kumar. 2016. Journal of Chemical Technology & Biotechnology.
  15. Bloomberg New Energy Finance, Lithium-on prices falling.
  16. https://www.bloomberg.com/news/, 19 June 2018.
  17. M. A. Abduli. 1995. Waste Management and Research.
  18. European Portable Battery Association.
  19. http://www.epba-europe.org. 2 April 2003.
  20. J. A. S. Tenório, D. C. Oliveira, A.P. Chaves. 1999. Proceedings of the Global Symposium on Recycling Waste Treatment and Clean Technology (REWAS’99).
  21. A. Krebs. 1999. Proceedings of the Global Symposium on Recycling Waste Treatment and Clean Technology (REWAS’99), vol. II, TMS, 1999, pp. 1109–1116.
  22. A. Krebs, Batrec industry. 1999. Proceedings of the Fifth International Battery Recycling Congress, Deauville, France.
  23. R. Burri. 1999. Proceedings of the Fifth International Battery Recycling Congress, Deauville, France.
  24. J. Frenay, S. Feron, Domestic battery recycling in western Europe, in: J.H.L. Van Linden, D.L. Stewart Jr., Y. Sahai (Eds.). 1990. The Minerals, Metals and Materials Society.
  25. International Energy Agengy. World Energy Outlook 2012, Paris. 2012.
  26. B. Schlomann, T. Fleiter, S. Hirzel, M. Arens, C. Rohde, W. Eichhammer, F. Cebulla, R. Elsland, D. Fehrenbach, N. Singer, A. Gerspacher, F. Idrissova, E. Jochem, M. Mai, F. Reitze, F. A. Toro, J. Bachmann, K. Wittich, A. Hassan. 2013.  Energy consumption and CO2 emissions of industrial process technologies – saving opportunities, barriers and tools [original title: Energieverbrauch und CO2-Emissionen industrieller Prozesstechnologien – Einsparpotenziale, Hemmnisse und Instrumente].
  27. City of Beaverton. Target Industry Report.
  28. https://www.beavertonoregon.gov. May 2010.
  29. L. L. Hazard. 2002. Journal of  National  Medical Association.
  30. T. I. Lidsky, and J. S. Schneider. 2003.  Brain.
  31. S. Zhi, W. Sheng, S. P. Levine. 2000. American Industrial Hygiene Association.
  32. D. Jarosinska, S. Peddada, J. Rogan. 2004. Polish Environmental Research.
  33. M. T. Mansouri, O. Cauli. 2009. Environmental Toxicology and  Pharmacology.
  34. N. Basaran, and U. Undeger. 2000.  American Journal of Industrial Medicine.
  35. A. Bener, E. Obineche, M. Gillet, M. A. Pasha, B. Bishawi. 2001. International Archives of Occupational and Environmental  Health.
  36. K.  Danadevi, R.  Rozati, S. B. Banu, H. P. Rao, P. Grover. 2003.  Toxicology.
  37. C. Y. Hsiao, H. D. Wu, J. S. Lai, H. W. Kuo. 2001. Science of Total Environment.
  38. G. Franco-Netto, H. G. A. Alonzo, J. Cancio, M. Jost, S. Souza-Oliveira. 2003. Salud Publica de Mexico.
  39. P. Gottesfeld and A. K. Pkhrel. 2011. Journal of Occupational and Environmental Hygiene.
  40. J. Angerer, U. Eweres, M. Wihelm. 2007. International Journal of Hygiene and Environmental Health.
  41. World resources institute science-based targets.
  42. https://www.wri.org
  43. L. MacCarthy, Bart L, W. Atthirawong. 2003. International Journal of Operations &  Production  Management.
  44.  S. Trivikram. Plant Location Decisions and Factors Affecting Plant Location. (myventurepad.com/Business). March 7, 2017.
  45. S. Chand,  Top 10 Factors Affecting Plant Location – Explained! http://www.yourarticlelibrary.com/industries/plant-layout/top-10-factors-affecting-plant-location-explained/34618
  46. J. Heizer, B. Render, Direccion de la produccion. Decisiones estrategicas (Production management. Strategic decisions). Pearson Educacion, Madrid. 2001.
  47. C. Sakcilio. 1995. Journal of  Power Source.
  48. G. Cromme. 2013. Raw materials and the industrial value chain, an overview.
  49. https://www.ert.eu.
  50. Sunlight. Lead Acid Batteries Recycling.
  51. http://www.systems-sunlight. February 20, 2013
  52. D. Boden. 1998. Journal of Power Source.
  53. W. Li, L. Jiang, J. Zhan, C. Zhang. 2011. China Nonferrous Metal Mining Group.
  54. Hammer crusher for lead batteries recycling
  55. http://lead.stcitaly.com/lead-battery-recycling-plant equipment/hammer-crusher-for-lead-battery-recycling.html.
  56. J. G. Brooks. 1992.  Separation tank. US5100545A.
  57. N. K. Lyakov, D. A. Atanasova, V. S. Vassilev, G. A. Haralampiev. 2007.  Journal of Power Source.
  58. M.Y Du, L. M Zeng,  X. L Wang. 2018. Water.
  59. H. La Mers. 1974. Plastic melting and feeding machine. US3810563A.
  60. M. M. Sola. 1974.  Molding plastic machines. US3854859A.
  61. 王敏 古明远 吴佩佩 薛逊 曹志成 吴道洪. 2016. Rotary hearth furnace and method for treating lead and zinc smelting slag. CN105671328A.
  62. 周世伟. 2009. Flat cut type plate-casting machine Systems, devices, and/or methods for manufacturing. CN101486085A.
  63. 李三济. 2010. Spiral rotating sieve. CN201807527U.
  64. 凯王. 2006. Battery electrolyte filling method. CN101212037A.
  65. L. Hesselink, D. Rizal, E. S. Bjornson. 2002. Control and observation of physical devices, equipment and processes by multiple users over computer networks. US7467187B2.
  66. M. F. McDonald, R. L. Long, C. J. Thomas. 1997. On-line control of a chemical process plant. US6072576A.
  67. K. Furem, D. W. Robertson, G. Madhavarao. 2004. System and method for distributed reporting of machine performance. US7406399B2.
  68. P. J. Kaufman. M. E. Walker. 2009. Real time energy consumption analysis and reporting. US20100274602A1.
  69. C. R. Canada, F. Eugene Pardue, J. C. Robinson, Z. D. Paul Wolfensberger, W. E. Childress. 1998. Method and apparatus for reducing electrical power consumption in a machine monitor. US6124692A.
  70. E. Hollnagel and D. D. Woods. 2005. Joint cognitive systems. Foundations of cognitive systems engineering. Boca Raton: Taylor & Francis.
  71. K. J. Vicente. 2007. Monitoring a nuclear power plant. In F. Kramer, D. A. Wiegmann, & A. Kirlik (Eds.), Attention. From theory to practice. Oxford: Oxford University Press.
  72. K. J. Vicente, R. J.Mumaw, E. M. Roth. 2004. Theoretical Issues in Ergonomics Science.
  73. N. Moray, “Human factors in process control,” In G. Salvendy (Ed.), Handbook of human factors and ergonomics. New York: Wiley, 1997.
  74. R. Salomone, F. Mondello, F. Lanuzza, G. Micali. 2005.  Dipartimento di Studi su ‘‘Risorse, Impresa Ambiente e Metodologie Quantitative’’ Universit degli Studi di Messina Piazza S. Pugliatti n.1 98100, Messina, Italy, ENVIRONMENTAL ASSESSMENT An Eco-balance of a Recycling Plant for Spent Lead–Acid Batteries, Springer Science+Business Media, Inc.  https://doi: 10.1007/s00267-003-0099-x 2005.
  75. C. C. Lee, & S. D. Lin., Handbook of Environmental Engineering Calculations. McGraw Hill, New York, (1999).
  76. J. S. Mao, J. Cao, T. E. Graedel. 2009. Environmental Pollution. https://doi:10.1016/j.envpol.2009.05.003.
  77. J. Mao, Z. Lu, Z. Yang. 2006.  Journal of  Industrial Ecology.
  78. Energy Education, Air pollution control devices, Jordan Hanania, Kailyn Stenhouse, Jasdeep Toor, Jason Donev
  79. Encyclopedia Britannica, Air Pollution Control, 2019 Encyclopedia Britannica, Inc.
  80. G. Macchi, M. Pagano, M. Santori, G. Tiravanti. 1993. Water Research.
  81. United States Environmental Protection Agency, Effects of Acid Rain, Lst updated on June 1, 2017
  82. Hazardous materials table - UCSB EHS.
  83. www.ehs.ucsb.edu/files/docs/hw/Alphabetized_Hazmat_Table_Revised_Jan_2014.xls

Downloads

Published

2019-08-30

Issue

Section

Research Articles

How to Cite

[1]
Panagiotis J. Charitidis, Savvas Symeonidis, Stefanos Dimitriadis, Christos Manolis, Savvas Chavianidis, Christos Dimitriadis, " Industrial Facilities for Recycling Lead Acid Batteries (LABS), International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 6, Issue 4, pp.331-340, July-August-2019. Available at doi : https://doi.org/10.32628/IJSRSET196444