A Review Various Techniques for Content Based Spam Filtering

Authors(2) :-Minhaz Fatima Nayanmulla Kallu Pathan, Prof. Vijaya Kamble

In recent years' spam became a major problem of Internet and electronic correspondence. There developed plenty of techniques to battle them. In this paper, the overview of existing e-mail spam filtering methods is given. The classification, evaluation, and correlation of conventional and learning-based methods are provided. Some personal enemy of spam items is tested and compared. The statement for a new methodology in spam filtering technique is considered.

Authors and Affiliations

Minhaz Fatima Nayanmulla Kallu Pathan
M. Tech CSE, Guru Nanak Institute of Engineering & Technology, Nagpur, Maharashtra, India
Prof. Vijaya Kamble
M. Tech CSE, Guru Nanak Institute of Engineering & Technology, Nagpur, Maharashtra, India

Spam Filtering, Machine learning, Learning-Based Methods, Classification

  1. Aladdin Knowledge Systems, Anti-spam white paper,Retrieved December 28, 2011.
  2. F. Smadja, H. Tumblin, "Automatic spam detection as a text classification task", in: Proc. of Workshop on Operational Text Classification Systems, 2002.
  3. A. Hassanien, H. Al-Qaheri, "Machine Learning in Spam Management", IEEE TRANS., VOL. X, NO. X, FEB.2009
  4. P. Cunningham, N. Nowlan, "A Case-Based Approach to Spam Filtering that Can Track Concept Drift", Retrieved December 28, 2011
  5. M. Sahami, “Learning Limited Dependence Bayesian Classifiers,” Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, The AAAI Press, Menlo Park, 1996, pp. 334-338.
  6. M. Sahami, S. Dumais, D. Heckerman and E. Horvitz, “A Bayesian Approach to Filtering Junk Email,” AAAI Technical Report WS-98-05, AAAI Workshop on Learn-ing for Text Categorization, 1998.
  7. J. R. Hall, “How to Avoid Unwanted Email,” Communi-cations of the ACM, Vol. 41, No. 3, 1998, pp. 88-95. doi:10.1145/272287.272329
  8. E. Gabber, M. Jakobsson, Y. Matias and A.J. Mayer, “Curbing Junk E-Mail via Secure Classification,” Pro-ceedings of the Second International Conference on Fi-nancial Cryptography, Springer-Verlag London, 23-25 March 1998, pp. 198-213.
  9. R. A. Fisher, “On Some Extensions of Bayesian Inference Proposed by Mr. Lindley,” Journal of the Royal Statisti-cal Society: Series B, Vol. 22, No. 2, 1960, pp. 299-301.
  10. G. Robinson, “A Statistical Approach to the Spam Prob-lem,” 2003. http://www.linuxjournal.com/article.php?sid=6467 (ac-cessed March 2011).
  11. P. Boldi, M. Santini and S. Vigna, “PageRank as a Func-tion of the Damping Factor,” Proceedings of the 14th In-ternational Conference on World Wide Web, ACM New York, 10-14 May 2005. doi:10.1145/1060745.1060827
  12. J. Gordillo and E. Conde, “An HMM for Detecting Spam Mail,” Expert Systems with Applications, Vol. 33, No. 3, 2007, pp. 667-682. doi:10.1016/j.eswa.2006.06.016
  13. L. M. Spracklin and L. V. Saxton, “Filtering Spam Using Kolmogorov Complexity Estimates,” in Russian, 21st In-ternational Conference on Advanced Information Net-working and Applications Workshops (Ainaw’07), Niag-ara Falls, 21-23 May 2007, pp. 321-328.
  14. S. V. Korelov, A. K. Kryukov and L. U. Rotkov, “Text Messages’ Digital Analysis on Spam Identification,” in Russian, Proceedings of Scientific Conference on Radio-physics, Nizhni Novgorod State University, Nizhny Nov- gorod Oblast, 2006.
  15. W.-F. Hsiao and T.-M. Chang, “An Incremental Clus-ter-Based Approach to Spam Filtering,” Expert Systems with Applications, No. 34, No. 3, 2008, pp. 1599-1608. doi:10.1016/j.eswa.2007.01.018
  16. S. M. Lee, D. S. Kim and J. S. Park, “Spam Detection Using Feature Selection and Parameters Optimization,” IEEE International Conference on Intelligent and Soft-ware Intensive Systems, Krakow, 15-18 February 2010, pp. 883-888. doi:10.1109/CISIS.2010.116
  17. M. F. Saeddian and H. Beigy, “Spam Detection Using Dynamic Weighted Voting Based on Clustering,” Pro-ceedings of the 2008 Second International Symposium on Intelligent Information Technology Application, Vol. 2, pp. 122-126. doi:10.1109/IITA.2008.140
  18. M. Sasaki and H. Shinnou, “Spam Detection Using Text Clustering,” IEEE Proceedings of the 2005 International Conference on Cyberwords, Singapore, 23-25 November 2005, pp. 316-319. doi:10.1109/CW.2005.83
  19. P. Cortez, C. Lopes, P. Sousa, M. Rocha and M. Rio, “Symbiotic Data Mining for Personalized Spam Filter-ing,” IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Milan, 15-18 September 2009, pp. 149-156. doi:10.1109/WI-IAT.2009.30
  20. W. Lauren, “Spam Wars,” Communications of the ACM —Program Compaction, Vol. 46, No. 8, 2003, p. 136.
  21. G. Pawel and M. Jacek, “Fighting the Spam Wars: A Re-Mailer Approach with Restrictive Aliasing,” ACM Transactions on Internet Technology (TOIT), Vol. 4, No. 1, 2004, pp. 1-30.
  22. F. Li, H. Mo-Han and G. Pawel, “The Community Be-havior of Spammers” 2011. http://web.media.mit.edu/~fulu/ClusteringSpammers.pdf.
  23. K. S. Xu, M. Kliger, Y. Chen, P. J. Woolf and A. O. Hero, “Revealing Social Networks of Spammers through Spec-tral Clustering,” IEEE International Conference on Com-munications, Dresden, 14-18 June 2009, pp. 1-6. doi:10.1109/ICC.2009.5199418
  24. K. S. Xu, M. Kliger and A. O. Hero, “Tracking Commu-nities of Spammers by Evolutionary Clustering,” 2011.
  25. Laboratory CSAIL MIT in USA, 2011. http://projects.csail.mit.edu/spamconf/.
  26. Computer Laboratory Faculty Cambridge University in UK, 2011. http://www.cl.cam.ac.uk/~rnc1/.
  27. National Center for Scientific Research, “Demokritos,” 2011. http://www.iit.demokritos.gr/.
  28. D. Mertz, “Spam Filtering Techniques,” 2002. http://www.ibm.com/developerworks/linux/library/l-spamf.html.
  29. R. Segal, J. Crawford, J. Kephart and B. Leib, “Spam-Guru: An Enterprise Anti-Spam Filtering System,” IBM Thomas J. Watson Research Center. http://www.research.ibm.com/people/r/rsegal/papers/spamguru-overview.pdf.
  30. Microsoft Antispam Technologies. http://www.microsoft.com/mscorp/safety/technologies/antispam/default.mspx.
  31. Symantec Antispam Protection for E-Mail. http://www.symantec.com/business/premium-antispam,.
  32. Kasperskiy Ant-Spam. http://www.kaspersky.ru/anti-spam.
  33. Anti-Spam Research Group. http://asrg.sp.am/.
  34. The Internet Engineering Task Force. http://www.ietf.org

Publication Details

Published in : Volume 4 | Issue 11 | November-December 2018
Date of Publication : 2018-12-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 267-271
Manuscript Number : IJSRSET21841138
Publisher : Technoscience Academy

Print ISSN : 2395-1990, Online ISSN : 2394-4099

Cite This Article :

Minhaz Fatima Nayanmulla Kallu Pathan, Prof. Vijaya Kamble, " A Review Various Techniques for Content Based Spam Filtering, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 4, Issue 11, pp.267-271, November-December-2018. Available at doi : https://doi.org/10.32628/18410IJSRSET
Journal URL : http://ijsrset.com/IJSRSET21841138

Article Preview

Follow Us

Contact Us