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selective fading and the improvement due to 

correlative coding in MIMO-OFDM. 

 

II. METHODS AND MATERIAL 
 

A. System Model 

Consider a MIMO-OFDM system with Nt transmit 

antennas, Nr receive antennas, and Ns subcarriers which 

employs binary phase shift keying achieved through the 

frequency-domain polynomial F(D) = 1 – D [Zhao 

1998.], (BPSK) modulation. Input symbols ai  {1, - 1} 

are assumed to be i.i.d. with normalized energy. The 

correlative coding to encode ai is which generates a new 

sequence bi = ai  – ai-1  with E[bi] = 0    and otherwise. 

 

 
 

It is well known that the general form of MIMO-OFDM 

over slowly fading channels (i.e., the channel is time-

invariant over several OFDM symbol periods) can be 

expressed as [Stuber, 2004] 

 

yk  = k xk + nk                            (2) 

 

where xk and yk represent, respectively, the transmitted 

and received data for all antennas on subcarrier k,  k is 

an Nr    Nt  matrix whose  (i, j)th element, {k}ij, 

denotes the channel frequency response between 

transmit antenna j and receive antenna i, and nk is an Nr 

 1 vector denoting the zero-mean AWGN with 

covariance 
2
nINr for all antennas on subcarrier k. 

 

B. Effects of Time-Selective Fadin  

In a time-selective fading environment, the NsNr  NsNt 

spatiotemporal channel matrix H in one OFDM symbol 

period is expressed as 

 
 

where L is the number of resolvable paths and 0 is an Nr  

 Nt zero matrix. Each non-zero block of H contains the 

Nr   Nt channel matrix Hl(n) for path l at time nTs (Ts  is 

the data symbol period).  

 

Assuming a WSSUS channel, all elements of Hl(n) are 

modeled as independent complex Gaussian random 

variables with zero mean and equal variance. The 

channel is assumed to have an exponential power-delay 

profile θ (Tl) = e
–Tl/Trms

, where Tl is the delay of the lth 

path and Trms is the rms delay spread. Since the channel 

is time-variant, the relationship between the channel 

coefficients for path l at times nTs and (n + m)Ts can be 

described as [Zheng, 2004] 

 

{Hl(n + m)}ij =  αm {Hl(n)ij + βl,ij(n + m)     (4) 

 

Where  

 

 
 

fd  is the maximum Doppler shift and βl,ij(n) are 

independent complex Gaussian random variables with 

zero mean and variance  e –  (1 – α
2

m).  

 

It is observed that the  channel matrix H in (4.3) is no 

longer a block circulant matrix as the case of slowly 

fading channels. Consequently, G  =  (U  INr)  H  (U 

 INt)H is no longer a block diagonal matrix, where U  

is the unitary DFT matrix with  

 

 
 

0   i, j   Ns – 1. This shows that time-selective fading 

causes ICI, which is 0   i, j   Ns – 1. This shows that 

time-selective fading causes ICI, which is represented by 

the off-diagonal blocks of G.  Let  Gij  denote the (i, j)th 

block of G.  

 

Eq.  (4) can be rewritten as  
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                  (6) 

Let ij be an Ns  Ns matrix given by 

 

 
 

As shown in APPENDIX A, ij has a circulant structure,  

Note that in this case CIR is the same for all subcarriers 

and is independent of the channel power-delay profile as 

well as the number of resolvable paths. Obviously,  Ccorr 

 C, k.  

 

Therefore, correlative coding effectively increase CIR. 

Note worthily, from (5), it is easy to see that although 

Ccorr is different for different subcarriers, the difference 

diminishes as Ns increases. As indicated earlier, when 

frequency-domain correlative coding with F(D) = 1 – D 

is used, the signals modulated on subcarriers are 

identical with alternate mark inversion code and {ai} can 

be recovered by using a ML sequence detector. 

 

 

III. RESULTS AND DISCUSSION 

 

In obtaining the numerical results, we consider a system 

with two transmit antennas and two receive antennas 

which employs BPSK modulation and adopt the “SUI-5” 

channel model [Falconer, 2002]. The time-selective 

Rayleigh fading channel is assumed to have three 

resolvable multipath components occurring at 0, 5, and 

10s. These paths are modeled as independent complex 

Gaussian random variables and the rms delay spread of 

the channel is 3.05s. The maximum Doppler shift is 

calculated based on a carrier frequency of fc  = 2GHz. 

 

CIR levels versus Ts calculated using Eqs.  (4) and (5) 

are plotted in   Fig.1, where the vehicle speed applied is  

vs  = 100Km/h. CIR curves of the  MIMO-OFDM 

system with different number of subcarriers in one 

OFDM symbol    (Ns = 8, 24, and 128) are compared 

 

Table 1.  PARAMETER VALUES USED IN THE 

SYSTEM SIMULATIONS 

 
 

In obtaining the numerical results, I consider a system 

with two transmit an-tennas and two receive antennas 

which employs BPSK modulation and adopt the “SUI-5” 

channel model. The time-selective Rayleigh fading 

channel is assumed to have three resolvable multipath 

components occurring at 0, 5, and 10s. These paths are 

modeled as independent complex Gaussian random 

variables and the rms delay spread of the channel is 

3.05s. The maximum Doppler shift is calculated based 

on a carrier frequency of fc  = 2GHz. 

 

CIR levels versus Ts calculated using Eqs.  (5) and (6) 

are plotted in   Fig. 2 where the vehicle speed applied is  

vs  = 100Km/h. CIR curves of the  MIMO-OFDM 

system with different number of subcarriers in one 

OFDM symbol    (Ns = 8, 24, and 128) are compared. 

As shown in Fig. 1, frequency-domain correlative 

coding incorporated in this letter can effectively increase 

CIR and the improvement is proportional to the number 

of subcarriers. With Ns = 128, the improvement is 

observed to be as high as 3.0dB. The BER performances 

of MIMO-OFDM systems with and without frequency-

domain correlative coding are compared in Fig.1., where 

Ts = 5 x 10
-7

s and vs = 100Km/h are applied. The ML 

detection scheme is used when correlative coding is 

applied. The improvement in the BER performance is 

also found proportional to the number of subcarriers. 
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Figure 1. CIR curves of MIMO-OFDM systems with and without frequency-

domain correlative coding. 

 

 
Figure 2.  BER versus Eb/N0 for MIMO-OFDM systems with and without 

frequency-domain correlative coding. 

 

 

IV. CONCLUSION 

 

We applied frequency-domain correlative coding to 

mitigate the effect of time-selective fading to the 

performance of MIMO-OFDM systems. We 

derived the analytical expression of CIR as a 

function of the maximum Doppler shift and power-

delay profile of the channel, the number of 

subcarriers, and the OFDM symbol duration. The 

CIR expression can be used to quantify the amount 

of ICI caused by channel time variations. 

Numerical results indicate that a simple correlative 

coding scheme with correlation polynomial F(D) = 

1 – D can effectively increase CIR of a 128-

subcarrier MIMO-OFDM system by as much as 

3.0dB, and the improvement further increases as the 

number of subcarriers becomes larger. 
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