
IJSRSET1622363 | Received : 23 April 2016 | Accepted : 27 April 2016 | March-April 2016 [(2)2: 1082-1085]

© 2016 IJSRSET | Volume 2 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

1082

A Survey Paper on GenProg : A Genetic Technique for Software
Repair

Chandrashekhar S. Pawar
Department of Computer Technology, R.C.P.I.T., Shirpur, Maharashtra, India

ABSTRACT

GenProg is a mechanized technique for repairing defects in off-the-rack, legacy programs without formal

particulars, program explanations or exceptional coding practices. GenProg utilizes a stretched out type of genetic

programming to develop a program variation that holds required usefulness however is not susceptible to a given

defect, utilizing existing test suites to encode both the imperfection and required usefulness. GenProg might be

connected either to program techniques for consequently detecting software defects source or modules.

Keywords: GenProg, Fitness, Mutation

I. INTRODUCTION

Genetic programming is consolidated with program

analysis techniques to repair bugs in the different

programs. In Genetic Programming (GP) has not

supplanted human software engineers, It create, keep up,

and repair computer programs to a great extent by hand.

In GP can be used in genetic technique program

examination strategies to repair legacy programs. It

expect that have entry to the C source code, a negative

experiment that activities the deficiency to be repaired,

and a few positive experiments that encode the required

conduct of the program. This program for use

developmental calculation is a promising strategy for

automating time-consuming and costly programming

support assignments, including bug repair. This GenProg

concentrating on:[1]

(1) Representation of individual variations

 (2) Crossover plan

 (3) Mutation operators

 (4) Search space definition.

II. LITRATURE SURVEY

W. Weimer et al.[1] are used genetic programming to

develop program variations until one was found that

both hold required usefulness. Standard experiments are

utilized to practice the deficiency and to encode program

prerequisites. After an effective repair has been found, it

is minimized utilizing basic differencing calculations

and delta investigating.

Arcuri et al. [2, 3, 4] are utilized GP to automate the

repair of software bugs, demonstrating the design on a

hand-coded model of the bubble sort algorithm.

Demsky et al. [5] proposed a strategy for data structure

repair. Given a formal detail of data structure

consistency, run-time observing code is embedded that

"patches up" conflicting state so that a surrey system can

keep on executing if the data structures ever ended up

conflicting.

W. Weimer et al.[7] discribe combined program analysis

strategies with transformative calculation to

consequently repair bugs in off-the-shelf legacy C

programs.

III. CONCEPTS

A. Genpro Concepts

This method also to solve the bug problem in software

they use in evolutionary methods have been used to

repair programs automatically, with promising results

but this fitness function for repair software bugs .

However, the wellness capacity used to accomplish

these outcomes depended on a couple of basic

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

1083

experiments and is likely excessively oversimplified for

bigger programs and more complex bugs. It focus here

on two parts of wellness assessment: effectiveness and

exactness. This describes and evaluates Genetic Program

Repair (“GenProg”), a technique that uses existing test

cases to automatically generate repairs for real-world

bugs legacy applications. It utilize the expressions

"repair" and "patch" interchangeably. GenProg does not

require formal particulars, program annotations, or

exceptional coding practices. We introduce three key

innovations to address this longstanding problem:-

1. GenProg works at the statement level of a

program‟s abstract syntax tree (AST)

expanding the search granularity.

2. GenProg to discover the weighted path

comprising of a list of program statements each

connected with a weight based on that

statement‟s event in different experiment

execution follows.

3. GenProg operates critical Fault confinement is,

when all is said in done, a hard and unsolved

issue. It describe “GenProg” to use in a software

quality to remove the bugs in a program and it is

very good method to remove the bugs and

getting the good result. It is also saving the time

and solves the problem in software. Fixing bugs

is a difficult, time-consuming, and manual

process. Some reports place programming

maintenance, generally characterized as any

alteration made on a framework after its

delivery, at 90% of the aggregate expense of a

typical software project. This technique takes as

data a program, an arrangement of successful

positive experiments that encode required

project conduct, and a failing negative test case

that shows an imperfection .In GenProg uses

various techniques for solving bugs in a

program.

B. Software Repair Concept

It uses 3 function for repairing the software program.

This method is very useful and fast process to solve the

bug problem. GenProg may provide utility as a

debugging aid alternately by incidentally tending to bugs

that would some way or another take days to patch or

require inconvenient temporary solutions, a utilization

case we investigated in our closed loop repair model.

GenProg uses a representation that combines abstract

syntax trees with weighted violating paths; these bits of

knowledge permit our search to scale to vast programs.

In GenProg uses 3 steps to software repair:-

1) Negative test case to Positive test case

GenProg takes as input source code containing a defect

and a set of test cases, including a failing negative test

case that exercises the defect and a set of passing

positive test cases that describe requirements. A program

passes a test case if it produces the expected output

when run on the input, as defined by the oracle

comparator; otherwise, it fails the test case. A positive

experiment is a standard (relapse) experiment that

encodes right program conduct; the program‟s current

test suite comprises the positive experiments. A negative

experiment is a program data that shows the bug and a

comparator that identifies it.

2) Fitness Function

In GP, the fitness function is an objective function used

to evaluate variants. The fitness of a person in a program

repair task should assess how well the program

maintains avoids the the program bug while as yet doing

"everything else it is supposed to do.”

It use test cases to measure fitness. In fitness function

encodes software requirements at the test case level:

negative test cases encode the fault to be repaired, while

positive test cases encode functionality that cannot be

sacrificed.:-

WPosT :- It successful positive test is weighted by the

global parameter

WNegT:- It successful negative test is weighted by the

global parameter

The fitness function is thus simply the weighted sum

 Fitness (P) = WPosT *|{t € PosT | P passes t} + WNegT

* |{t € NegT | P passes t}|

3) Mutation Function:-

It has a little risk of changing a specific statement along

the weighted path Changes to statements.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

1084

C. Genpro Analysis Concept

When user wants to solve the bug in the program then

GenProg to solve this problem. Some keywords into a

GenProg then related this keyword, there are many bug

are problem to be created in a particular program.

This technique that uses genetic programming to evolve

a version of a program that retains required functionality

while avoiding a particular error. GenProg may provide

utility as a debugging aid or by temporarily addressing

bugs that would otherwise take days to patch alternately

require unfavourable makeshift arrangements, a

utilization case we investigated in our closed loop repair

model. GenProg utilizes a representation that

consolidates abstract syntax trees with weighted

damaging ways; these bits of knowledge permit our

search to scale to vast programs.

In the long term, the technique have described leaves

considerable space for future examination concerning

the repair of new types of bugs and programs and the

effects of automatic repair on program readability,

maintainability, and quality. In future to add this method

Investigate Mutational Robustness, Improve GP

Technique, on-Repair Evolution. It is an automatic

repair may provide a first step toward the automation of

many aspects of the program development procedure.

Figure 1. Results on 120K lines of program or code

This figure.1 shows the averages for 100 random trials.

The “Positive Tests” column describes the positive tests.

The “Path” columns give the weighted path length.

“Initial Repair”. It gives the average performance for

one trial, as far as "Time" (the normal time taken for

each effective trial), "fitness" (the normal number of

fitness assessments in a successful trial), "Success"

(what number of the arbitrary trials brought about a

repair). "Size" reports the normal UNIX diff size

between the first source and the essential repair, in lines.

"Final Repair" reports the same data for the creation of a

1-minimal repair from the first initial repair found; the

minimization prepare dependably succeeds. "Effect"

depicts the operations performed by a demonstrative last

patch: A patch may insert code, erase code, or both

insert, and erase code.

D. Repair Minimization Concept

Once a variation is found that passes through the greater

part of the experiments. It minimizes the repair before

displaying it to engineers. Because of the irregularity in

the mutation and crossover calculations, it is likely that

the effective variation will incorporate insignificant

changes that are hard to examine for rightness. It wishes

to deliver a patch, a rundown of alters that, when

connected to the first program, repair the imperfection

without giving up required usefulness. It joins

experiences from delta debugging and tree-organized

separation measurements to minimize the repair.

Naturally, we create a substantial patch by taking the

difference between the variation and the original, and

afterward dispose of all aspects of that patch while as yet

passing all test cases.

E. Genetic Operator

In GenProg to use various methods for evolutionary

computing, particularly genetic programming can

optimize software and software engineering, including

evolving test benchmarks, look meta-heuristics,

conventions, making web administrations, enhancing

hashing and trash gathering, repetitive programming and

even consequently settling bugs. Frequently there are

numerous potential approaches to adjust usefulness with

asset utilization.

Be that as it may, a human software engineer can't

attempt all of them. Also the optimal trade off may be

different on each hardware platform and it could vary

over time or as usage changes. It might be genetic

programming can consequently recommend diverse

exchange offs for each new market.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

1085

Figure 2. Results on 63 kLOC.

It report averages for 100 random trials. The „jPathj‟

column gives the weighted path length, which

approximates search space size. „Success‟ reports the

percentage of random trials that resulted in a repair.

"Time" gives the normal divider clock time, and

"Fitness" the normal number of fitness assessments for a

successful trial; neither incorporates minimization time.

„Initial‟ and „Final‟ report the normal UNIX difference

size for both the initial and the minimized repair.

Figure 3. Fitness function performance

IV. DISCUSSION AND CONCLUSION

There are different methods used for GenProg which are

fitness function, crossover function, and Mutation

operations to solve the bug problem. GenProg to use in a

software quality to remove the bugs in a program and it

is very good method to remove the bugs and getting the

good result. It is also saving the time and solves the

problem in software. Fixing bugs is a difficult, time-

consuming, and manual process. Some reports place

programming support, generally characterized as any

change made on a framework after its conveyance, at 90%

of the aggregate expense of a normal software project.

V. REFERENCES

[1] W. Weimer, T. Nguyen, C. Le Goues, and S.

Forrest, “Automatically Finding Patches Using

Genetic Programming,” in Proceedings of

International Conference Software Eng., pp. 364-

367, 2009.

[2] “A. Arcuri. On the automation of fixing software

bugs,” in Proceedings of the Doctoral Symposium

of the IEEE International Conference on Software

Engineering, 2008.

[3] A. Arcuri, D. R. White, J. Clark, and X. Yao,

“Multi-objective improvement of software using

co-evolution and smart seeding,” in Proceedings of

the International Conference on Simulated

Evolution And Learning, pages 61–70, 2008.

[4] A. Arcuri and X. Yao, “A novel co-evolutionary

approach to automatic software bug fixing,” in

IEEE Congress on Evolutionary Computation,

2008

[5] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J.

H. Perkins, and M. Rinard, “Inference and

enforcement of data structure consistency

specifications,” in International Symposium on

Software Testing and Analysis, pages 233–244,

2006.

[6] S. Forrest, W. Weimer, T. Nguyen, and C. Le

Goues, “A Genetic Programming Approach to

Automated Software Repair,” in Proceedings of

Genetic and Evolutionary Computing Conference,

2009.

[7] W. Weimer, S. Forrest, C. Le Goues, and T.

Nguyen, “Automatic Program Repair with

Evolutionary Computation,” Comm. ACM, vol. 53,

no. 5, pp. 109-116, May 2010.

[8] W. Weimer, “Patches as Better Bug Reports,” in

Proceedings of Conference on Generative

Programming and Component Eng., pp. 181-190,

2006.

