
IJSRSET1622384 | Received : 20 April 2016 | Accepted : 03 May 2016 | March-April 2016 [(2)2: 1234-1246]  

 

© 2016 IJSRSET | Volume 2 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099 
Themed Section:  Engineering and Technology 

 

1234 

 

An Efficient Image Watermarking Method using Lifting Wavelet 
Transformation (LWT) 

Keerthana G
*
, Bhuvana S, BalaSubramanian R 

Department of
 
Computer Science and Engineering, Sri Krishna College of Technology, Coimbatore, TamilNadu, India 

 
ABSTRACT 
 

In image watermarking method we have two common attacks namely, Cropping and random bending. In this paper 

we propose a method of image-watermarking to deal with these attacks, also with other common attacks. In the 

embedding process, the pre-processing of host image is done by a Gaussian low-pass filter and then, we select 

randomly a number of gray levels and the histogram of the filtered image is constructed and these methods are also 

followed for secret key image . After that, a histogram-shape-related index is given to choose the pixel groups with 

the highest number of pixels and a safe band is given between the chosen and non-chosen pixel groups. A 

watermark-embedding scheme is determined to insert watermarks into the chosen pixel groups. The histogram-

shape-related index and safe band are used to bring about good robustness. Moreover, a high-frequency component 

modification mechanism is also applied in the embedding scheme to further improve robustness. At the decoding 

end, based on the assigned secret key, the watermarked pixel groups are discovered and watermarks are extracted 

from them. 

Keywords: Gaussian filter, Image watermarking, LWT, histogram construction. 

 

I. INTRODUCTION 

 

A digital watermark is a kind of marker covertly 

embedded in a noise-tolerant signal such as an audio, 

video or image data. It is typically used to identify 

ownership of the copyright of such signal. 

"Watermarking" is the process of hiding digital 

information in a carrier signal; the hidden information 

should, but does not need to, contain a relation to the 

carrier signal. Digital watermarks may be used to verify 

the authenticity or integrity of the carrier signal or to 

show the identity of its owners. It is prominently used 

for tracing copy right infringements and for banknote 

authentication. 

 

Like traditional watermarks, digital watermarks are only 

perceptible under certain conditions, i.e. after using 

some algorithm, and imperceptible otherwise. If a digital 

watermark distorts the carrier signal in a way that it 

becomes perceivable, it is of no use. Traditional 

Watermarks may be applied to visible media (like 

images or video), whereas in digital watermarking, the 

signal may be audio, pictures, video, texts or 3D models. 

A signal may carry several different watermarks at the 

same time. Unlike metadata that is added to the carrier 

signal, a digital watermark does not change the size of 

the carrier signal. 

The needed properties of a digital watermark depend on 

the use case in which it is applied. For marking media 

files with copyright information, a digital watermark has 

to be rather robust against modifications that can be 

applied to the carrier signal. Instead, if integrity has to 

be ensured, a fragile watermark would be applied. 

Both steganography and digital watermarking employ 

stenographic techniques to embed data covertly in noisy 

signals. But whereas steganography aims for 

imperceptibility to human senses, digital watermarking 

tries to control the robustness as top priority. 

Since a digital copy of data is the same as the original, 

digital watermarking is a passive protection tool. It just 

marks data, but does not degrade it or control access to 

the data. 

One application of digital watermarking is source 

tracking. A watermark is embedded into a digital signal 

at each point of distribution. If a copy of the work is 
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found later, then the watermark may be retrieved from 

the copy and the source of the distribution is known. 

This technique reportedly has been used to detect the 

source of illegally copied movies. 

Digital watermarking may be used for a wide range of 

applications, such as: 

 Copyright protection. 

 Source tracking (different recipients get differently 

watermarked content). 

 Broadcast monitoring (television news often 

contains watermarked video from international 

agencies). 

 Video authentication. 

 Software crippling on screen casting programs, to 

encourage users to purchase the full version to 

remove it. 

 A digital watermark is called robust with respect to 

transformations if the embedded information may be 

detected reliably from the marked signal, even if 

degraded by any number of transformations. Typical 

image degradations are JPEG compression, rotation, 

cropping, additive noise, and quantization. For video 

content, temporal modifications and MPEG 

compression often are added to this list. A digital 

watermark is called imperceptible if the 

watermarked content is perceptually equivalent to 

the original, un-watermarked content. In general, it 

is easy to create either robust watermarks or 

imperceptible watermarks, but the creation of both 

robust and imperceptible watermarks has proven to 

be quite challenging. Robust imperceptible 

watermarks have been proposed as a tool for the 

protection of digital content, for example as an 

embedded no-copy-allowed flag in professional 

video content.  

 Digital watermarking techniques may be classified in 

several ways. 

 The information to be embedded in a signal is called 

a digital watermark, although in some contexts the 

phrase digital watermark means the difference 

between the watermarked signal and the cover 

signal. The signal where the watermark is to be 

embedded is called the host signal. A watermarking 

system is usually divided into three distinct steps, 

embedding, attack, and detection. In embedding, an 

algorithm accepts the host and the data to be 

embedded, and produces a watermarked signal. 

 Then the watermarked digital signal is transmitted or 

stored, usually transmitted to another person. If this 

person makes a modification, this is called an attack. 

While the modification may not be malicious, the 

term attack arises from copyright protection 

application, where third parties may attempt to 

remove the digital watermark through modification. 

There are many possible modifications, for example, 

lossy compression of the data (in which resolution is 

diminished), cropping an image or video, or 

intentionally adding noise. 

 Detection (often called extraction) is an algorithm 

which is applied to the attacked signal to attempt to 

extract the watermark from it. If the signal was 

unmodified during transmission, then the watermark 

still is present and it may be extracted. In robust 

digital watermarking applications, the extraction 

algorithm should be able to produce the watermark 

correctly, even if the modifications were strong. In 

fragile digital watermarking, the extraction 

algorithm should fail if any change is made to the 

signal. 

Cropping 

 

Cropping refers to the removal of the outer parts of an 

image to improve framing, accentuate subject matter or 

change aspect ratio. Depending on the application, this 

may be performed on a physical photograph, artwork or 

film footage, or achieved digitally using image editing 

software. The term is common to the film, broadcasting, 

photographic, graphic design and printing industries. 

 

In the printing, graphic design and photography 

industries, cropping
 
refers to removing unwanted areas 

from a photographic or illustrated image. One of the 

most basic photo manipulation processes, it is performed 

in order to remove an unwanted subject or irrelevant 

detail from a photo, change its aspect ratio, or to 

improve the overall composition. In telephoto 

photography, most commonly in bird photography, an 

image is cropped to magnify the primary subject and 

further reduce the angle of view when a lens of 

sufficient focal length to achieve the desired 

magnification directly is not available. It is considered 

one of the few editing actions permissible in modern 

photojournalism along with tonal balance, colour 

correction and sharpening. A crop made from the top 

and bottom of a photograph may produce an aspect 
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which mimics the panoramic format (in photography) 

and the widescreen format in cinematography and 

broadcasting. Both of these formats are not cropped as 

such, rather the product of highly specialised optical 

configuration and camera design. 

The aspect ratio of a geometric shape is the ratio of its 

sizes in different dimensions. For example, the aspect 

ratio of a rectangle is the ratio of its longer side to its 

shorter side - the ratio of width to height,
[1]

 when the 

rectangle is oriented as a "landscape". 

The aspect ratio is expressed as two numbers separated 

by a colon (x:y).The values x and y do not represent 

actual width and height but, rather, the "relation" 

between width and height. As an example, 8:5, 16:10 

and 1.6:1 are the same aspect ratio. 

In objects of more than two dimensions, such as Hyper 

rectangles, the aspect ratio can still be defined as the 

ratio of the longest side to the shortest side. 

The goal is often to focus the viewer’s attention upon the 

subject, but the ends and means are ultimately at the 

discretion of the artist. It is accomplished by 

manipulating the viewpoint of the image, rather than the 

object(s) within. 

Framing, especially in the photographic arts, is primarily 

concerned with the position and perspective of the 

viewer. The position of the observer has tremendous 

impact on their perception of the main subject, both in 

terms of aesthetics and in their interpretation of its 

meaning. 

For example, if the viewer was placed very far away 

from a lone subject in an image, the viewer will gather 

more information about the subjects’ surroundings and 

bearing, but very little in terms of his emotions. If the 

setting was in the middle of flat plain, the viewer might 

perceive a sense of loneliness or that the subject is lost, 

because the viewer himself cannot find any visual cues 

to orient the location of the subject. If some foreground 

elements are put in front of the viewer, partially 

obscuring the subject, the viewer would take the position 

of an unseen observer. Especially if the artist chooses to 

hint malicious intent, a member of the audience might 

feel uncomfortable looking through the eyes of a stalker. 

Digital watermarking is distinctly different from data 

hashing. It is the process of altering the original data file, 

allowing for the subsequent recovery of embedded 

auxiliary data referred to as a watermark. 

A subscriber, with knowledge of the watermark and how 

it is recovered, can determine (to a certain extent) 

whether significant changes have occurred within the 

data file. Depending on the specific method used, 

recovery of the embedded auxiliary data can be robust to 

post-processing (such as lossy compression). 

If the data file to be retrieved is an image, the provider 

can embed a watermark for protection purposes. The 

process allows tolerance to some change, while still 

maintaining an association with the original image file. 

Researchers have also developed techniques that embed 

components of the image within the image. This can 

help identify portions of the image that may contain 

unauthorized changes and even help in recovering some 

of the lost data. 

A disadvantage of digital watermarking is that a 

subscriber cannot significantly alter some files without 

sacrificing the quality or utility of the data. This can be 

true of various files including image data, audio data, 

and computer code. 

The organization of this document is as follows. In 

Section 2 Related Works, this section details about the 

methods like filtering, histogram construction, numbers 

of bins and width and also about Discrete Wavelet 

Transform. In Section 3 Proposed Work, presents about 

Lifting Wavelet Transform and Embedding Method. 

Discussed in Section 4 Results and Performance 

Evaluation details about the results and also PSNR and 

BET calculations and graphs. In Section 5 Conclusion is 

given to Concludes this paper. 

 

II. METHODS AND MATERIAL 

 

1. Existing Methods  

A. Gaussian filtering  

In electronics and signal processing, a Gaussian filter is 

a filter whose impulse response is a Gaussianu function 

(or an approximation to it). Gaussian filters have the 

properties of having no overshoot to a step function 

input while minimizing the rise and fall time. This 

behaviour is closely connected to the fact that the 

Gaussian filter has the minimum possible group delay. It 

is considered the ideal time domain filter, just as the sinc 

is the ideal frequency domain filter. These properties are 

important in areas such as oscilloscopes and digital 

telecommunication systems.  
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Mathematically, a Gaussian filter modifies the input 

signal by convolution with a Gaussian function; this 

transformation is also known as the Weierstrass 

transform. 

The one-dimensional Gaussian filter has an impulse 

response given by 

                     (1) 

and the frequency response is given by the Fourier 

transform 

                         (2) 

with  the ordinary frequency. These equations can also 

be expressed with the standard deviation as parameter 

                     (3) 

and the frequency response is given by 

                           (4) 

By writing  as a function of  with the two equations 

for  and as a function of  with the two 

equations for  it can be shown that the product of 

the standard deviation and the standard deviation in the 

frequency domain is given by 

                        (5) 

where the standard deviations are expressed in their 

physical units, e.g. in the case of time and frequency in 

seconds and Hertz. 

In two dimensions, it is the product of two such 

Gaussians, one per direction: 

                 (6) 

where x is the distance from the origin in the horizontal 

axis, y is the distance from the origin in the vertical axis, 

and σ is the standard deviation of the Gaussian 

distribution. 

The Gaussian function is for  and would 

theoretically require an infinite window length. 

However, since it decays rapidly, it is often reasonable 

to truncate the filter window and implement the filter 

directly for narrow windows, in effect by using a simple 

rectangular window function. In other cases, the 

truncation may introduce significant errors. Better 

results can be achieved by instead using a different 

window function; see scale space implementation for 

details. 

 

Filtering involves convolution. The filter function is said 

to be the kernel of an integral transform. The Gaussian 

kernel is continuous. Most commonly, the discrete 

equivalent is the sampled Gaussian kernel that is 

produced by sampling points from the continuous 

Gaussian. An alternate method is to use the discrete 

Gaussian kernel which has superior characteristics for 

some purposes. Unlike the sampled Gaussian kernel, the 

discrete Gaussian kernel is the solution to the discrete 

diffusion equation. 

 

Since the Fourier transform of the Gaussian function 

yields a Gaussian function, the signal (preferably after 

being divided into overlapping windowed blocks) can be 

transformed with a Fast Fourier transform, multiplied 

with a Gaussian function and transformed back. This is 

the standard procedure of applying an arbitrary finite 

impulse response filter, with the only difference that the 

Fourier transform of the filter window is explicitly 

known. 

 

Due to the central limit theorem, the Gaussian can be 

approximated by several runs of a very simple filter such 

as the moving average. The simple moving average 

corresponds to convolution with the constant B-spline ( 

a rectangular pulse ), and, for example, four iterations of 

a moving average yields a cubic B-spline as filter 

window which approximates the Gaussian quite well. 

In the discrete case the standard deviations are related by 

                             (7) 

where the standard deviations are expressed in number 

of samples and N is the total number of samples. 

Borrowing the terms from statistics, the standard 

deviation of a filter can be interpreted as a measure of its 

size. The cut-off frequency of a Gaussian filter might be 
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defined by the standard deviation in the frequency 

domain yielding 

                              (8) 

where all quantities are expressed in their physical units. 

If  is measured in samples the cut-off frequency (in 

physical units) can be calculated with 

                                   (9) 

where  is the sample rate. The response value of the 

Gaussian filter at this cut-off frequency equals exp(-

0.5)≈0.607. 

However, it is more common to define the cut-off 

frequency as the half power point: where the filter 

response is reduced to 0.5 ( -3 dB ) in the power 

spectrum, or 1/√2 ≈ 0.707 in the amplitude spectrum 

(see e.g. Butterworth filter). For an arbitrary cut-off 

value 1/c for the response of the filter the cut-off 

frequency is given by 

                    (10) 

For c=2 the constant before the standard deviation in the 

frequency domain in the last equation equals 

approximately 1.1774, which is half the Full Width at 

Half Maximum (FWHM) (see Gaussian function). For 

c=√2 this constant equals approximately 0.8326. These 

values are quite close to 1. 

A simple moving average corresponds to a uniform 

probability distribution and thus its filter width of size  

has standard deviation . Thus the application 

of successive  moving averages with sizes 

 yield a standard deviation of 

. 

(Note that standard deviations do not sum up, but 

variances do.) 

A gaussian kernel requires  values, e.g. for a  

of 3 it needs a kernel of length 17. A running mean filter 

of 5 points will have a sigma of . Running it three 

times will give a  of 2.42. It remains to be seen where 

the advantage is over using a gaussian rather than a poor 

approximation. 

When applied in two dimensions, this formula produces 

a Gaussian surface that has a maximum at the origin, 

whose contours are concentric circles with the origin as 

centre. A two dimensional convolution matrix is 

precomputed from the formula and convolved with two 

dimensional data. Each element in the resultant matrix 

new value is set to a weighted average of that elements 

neighborhood. The focal element receives the heaviest 

weight (having the highest Gaussian value) and 

neighboring elements receive smaller weights as their 

distance to the focal element increases. In Image 

processing, each element in the matrix represents a pixel 

attribute such as brightness or color intensity, and the 

overall effect is called Gaussian blur. 

The Gaussian filter is non-causal which means the filter 

window is symmetric about the origin in the time-

domain. This makes the Gaussian filter physically 

unrealizable. This is usually of no consequence for 

applications where the filter bandwidth is much larger 

than the signal. In real-time systems, a delay is incurred 

because incoming samples need to fill the filter window 

before the filter can be applied to the signal. While no 

amount of delay can make a theoretical Gaussian filter 

causal (because the Gaussian function is non-zero 

everywhere), the Gaussian function converges to zero so 

rapidly that a causal approximation can achieve any 

required tolerance with a modest delay, even to the 

accuracy of floating point representation. 

B. Histogram construction 

A histogram is a graphical representation of the 

distribution of numerical data. It is an estimate of the 

probability distribution of a continuous variable 

(quantitative variable) and was first introduced by Karl 

Pearson. To construct a histogram, the first step is to 

"bin" the range of values that is, divide the entire range 

of values into a series of intervals and then count how 

many values fall into each interval. The bins are usually 

specified as consecutive, non-overlapping intervals of a 

variable. The bins (intervals) must be adjacent, and are 

usually equal size.  

If the bins are of equal size, a rectangle is erected over 

the bin with height proportional to the frequency, the 

number of cases in each bin. In general, however, bins 

need not be of equal width; in that case, the erected 

rectangle has are a proportional to the frequency of cases 

in the bin, the vertical axis is not frequency but density: 

the number of cases per unit of the variable on the 
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horizontal axis. A histogram may also be normalized 

displaying relative frequencies. It then shows the 

proportion of cases that fall into each of several 

categories, with the sum of the heights equalling. 

Examples of variable bin width are displayed on Census 

bureau data below. 

As the adjacent bins leave no gaps, the rectangles of a 

histogram touch each other to indicate that the original 

variable is continuous.  

Histograms give a rough sense of the density of the 

underlying distribution of the data, and often for density 

estimation: estimating the probability density function of 

the underlying variable. The total area of a histogram 

used for probability density is always normalized to 1. If 

the length of the intervals on the x-axis is all 1, then a 

histogram is identical to a relative frequency plot. 

A histogram can be thought of as a simplistic kernel 

density estimation, which uses a kernel to smooth 

frequencies over the bins. This yields a smoother 

probability density function, which will in general more 

accurately reflect distribution of the underlying variable. 

The density estimate could be plotted as an alternative to 

the histogram, and is usually drawn as a curve rather 

than a set of boxes. 

Another alternative is the average shifted histogram, 

which is fast to compute and gives a smooth curve 

estimate of the density without using kernels. 

The histogram is one of the seven basic tools of quality 

control.  

Histograms are often confused with bar charts. A 

histogram is used for continuous data, where the bins 

represent ranges of data, and the areas of the rectangles 

are meaningful, while a bar chart is a plot of categorical 

variables and the discontinuity should be indicated by 

having gaps between the rectangles, from which only the 

length is meaningful. Often this is neglected, which may 

lead to a bar chart being confused for a histogram. 

In a more general mathematical sense, a histogram is a 

function mi that counts the number of observations that 

fall into each of the disjoint categories (known as bins), 

whereas the graph of a histogram is merely one way to 

represent a histogram. Thus, if we let n be the total 

number of observations and k be the total number of 

bins, the histogram mi meets the following conditions: 

                           (1) 

C. Cumulative histogram 

A cumulative histogram is a mapping that counts the 

cumulative number of observations in all of the bins up 

to the specified bin. That is, the cumulative histogram 

Mi of a histogram mj is defined as: 

                         (1) 

D. Number of bins and width 

There is no "best" number of bins, and different bin 

sizes can reveal different features of the data. Grouping 

data is at least as old as Graunt's work in the 17th 

century, but no systematic guidelines were given until 

Sturges's work in 1926.  

Using wider bins where the density is low reduces noise 

due to sampling randomness; using narrower bins where 

the density is high (so the signal drowns the noise) gives 

greater precision to the density estimation. Thus varying 

the bin-width within a histogram can be beneficial. 

Nonetheless, equal-width bins are widely used. 

Some theoreticians have attempted to determine an 

optimal number of bins, but these methods generally 

make strong assumptions about the shape of the 

distribution. Depending on the actual data distribution 

and the goals of the analysis, different bin widths may 

be appropriate, so experimentation is usually needed to 

determine an appropriate width. There are, however, 

various useful guidelines and rules of thumb.  

In statistics, kernel density estimation (KDE) is a non-

parametric way to estimate the probability density 

function of a random variable. Kernel density estimation 

is a fundamental data smoothing problem where 

inferences about the population are made, based on a 

finite data sample. In some fields such as signal 

processing and econometrics it is also termed the 

Parzen–Rosenblatt window method, after Emanuel 

Parzen and Murray Rosenblatt, who are usually credited 

with independently creating it in its current form 

This histogram differs from the first only in the vertical 

scale. The area of each block is the fraction of the total 

that each category represents, and the total area of all the 

bars is equal to 1 (the fraction meaning "all"). The curve 

displayed is a simple density estimate. This version 
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shows proportions, and is also known as a unit area 

histogram. 

In other words, a histogram represents a frequency 

distribution by means of rectangles whose widths 

represent class intervals and whose areas are 

proportional to the corresponding frequencies: the height 

of each is the average frequency density for the interval. 

The intervals are placed together in order to show that 

the data represented by the histogram, while exclusive, 

is also contiguous. (E.g., in a histogram it is possible to 

have two connecting intervals of 10.5–20.5 and 20.5–

33.5, but not two connecting intervals of 10.5–20.5 and 

22.5–32.5. Empty intervals are represented as empty and 

not skipped.). 

E. Discrete Cosine Transform (DCT) 

A discrete cosine transform (DCT) expresses a finite 

sequence of data points in terms of a sum of cosine 

functions oscillating at different frequencies. DCTs are 

important to numerous applications in science and 

engineering, from lossy compression of audio (e.g. 

MP3)and images (e.g. JPEG) (where small high-

frequency components can be discarded), to spectral 

methods for the numerical solution of partial differential 

equations. The use of cosine rather than sine functions is 

critical for compression, since it turns out (as described 

below) that fewer cosine functions are needed to 

approximate a typical signal, whereas for differential 

equations the cosines express a particular choice of 

boundary conditions. 

In particular, a DCT is a Fourier-related similar to the 

discrete Fourier transform (DFT), but using only real 

numbers. DCTs are equivalent to DFTs of roughly twice 

the length, operating on real data with even symmetry 

(since the Fourier transform of a real and even function 

is real and even), where in some variants the input 

and/or output data are shifted by half a sample. There 

are eight standard DCT variants, of which four are 

common. 

The most common variant of discrete cosine transform is 

the type-II DCT, which is often called simply "the 

DCT", its inverse, the type-III DCT, is correspondingly 

often called simply "the inverse DCT" or "the IDCT". 

Two related transforms are the discrete sine transforms 

(DST), which is equivalent to a DFT of real and odd 

functions, and the modified discrete cosine transforms 

(MDCT), which is based on a DCT of overlapping data. 

The DCT, and in particular the DCT-II, is often used in 

signal and image processing, especially for lossy 

compression, because it has a strong "energy 

compaction" property: in typical applications, most of 

the signal information tends to be concentrated in a few 

low-frequency components of the DCT. For strongly 

correlated Markov processes, the DCT can approach the 

compaction efficiency of the Karhunen Loève transform 

(which is optimal in the decorrelation sense). As 

explained below, this stems from the boundary 

conditions implicit in the cosine functions. 

Like any Fourier-related transform, discrete cosine 

transforms (DCTs) express a function or a signal in 

terms of a sum of sinusoids with different frequencies 

and amplitudes. Like the discrete Fourier transform 

(DFT), a DCT operates on a function at a finite number 

of discrete data points. The obvious distinction between 

a DCT and a DFT is that the former uses only cosine 

functions, while the latter uses both cosines and sines (in 

the form of complex exponentials). However, this 

visible difference is merely a consequence of a deeper 

distinction: a DCT implies different boundary conditions 

than the DFT or other related transforms. 

Formally, the discrete cosine transform is a linear, 

invertible function  (where  denotes the 

set of real numbers), or equivalently an invertible N ×N 

square matrix. There are several variants of the DCT 

with slightly modified definitions. The N real numbers 

x0, xN-1 are transformed into the N real numbers X0... XN-

1 according to one of the formulas: 

A. DCT-I 

 
 

Some authors further multiply the x0 and xN-1 terms by 

√2, and correspondingly multiply the X0 and XN-1 terms 

by 1/√2. This makes the DCT-I matrix orthogonal, if one 

further multiplies by an overall scale factor of 

, but breaks the direct correspondence with a real-even 

DFT. 

The DCT-I is exactly equivalent (up to an overall scale 

factor of 2), to a DFT of  real numbers with even 

symmetry. For example, a DCT-I of N=5 real numbers 

abcde is exactly equivalent to a DFT of eight real 

numbers abcdedcb (even symmetry), divided by two. (In 
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contrast, DCT types II-IV involve a half-sample shift in 

the equivalent DFT.) 

Note, however, that the DCT-I is not defined for N less 

than 2. (All other DCT types are defined for any positive 

N.) 

Thus, the DCT-I corresponds to the boundary 

conditions: xn is even around n=0 and even around n=N-

1; similarly for Xk. 

B.  DCT-II 

 

 

The DCT-II is probably the most commonly used form, 

and is often simply referred to as "the DCT". 

This transform is exactly equivalent (up to an overall 

scale factor of 2) to a DFT of  real inputs of even 

symmetry where the even-indexed elements are zero. 

That is, it is half of the DFT of the  inputs , 

where ,  for , 

, and  for . 

Some authors further multiply the X0 term by 1/√2 and 

multiply the resulting matrix by an overall scale factor 

of  (see below for the corresponding change in 

DCT-III). This makes the DCT-II matrix orthogonal, but 

breaks the direct correspondence with a real-even DFT 

of half-shifted input. This is the normalization used by 

Matlab, for example. In many applications, such as 

JPEG, the scaling is arbitrary because scale factors can 

be combined with a subsequent computational step (e.g. 

the quantization step in JPEG), and a scaling that can be 

chosen that allows the DCT to be computed with fewer 

multiplications.  

The DCT-II implies the boundary conditions: xn is even 

around n=-1/2 and even around n=N-1/2; Xk is even 

around k=0 and odd around k=N. 

The Fourier-related transforms that operate on a function 

over a finite domain, such as the DFT or DCT or a 

Fourier series, can be thought of as implicitly defining 

an extension of that function outside the domain. That is, 

once you write a function  as a sum of sinusoids, 

you can evaluate that sum at any , even for where the 

original  was not specified. The DFT, like the 

Fourier series, implies a periodic extension of the 

original function. A DCT, like a cosine transform, 

implies an even extension of the original function. 

In particular, it is well known that any discontinuities in 

a function reduce the rate of convergence of the Fourier 

series, so that more sinusoids are needed to represent the 

function with a given accuracy. The same principle 

governs the usefulness of the DFT and other transforms 

for signal compression: the smoother a function is, the 

fewer terms in its DFT or DCT are required to represent 

it accurately, and the more it can be compressed. (Here, 

we think of the DFT or DCT as approximations for the 

Fourier series or cosine series of a function, respectively, 

in order to talk about its "smoothness".) However, the 

implicit periodicity of the DFT means that 

discontinuities usually occur at the boundaries: any 

random segment of a signal is unlikely to have the same 

value at both the left and right boundaries. (A similar 

problem arises for the DST, in which the odd left 

boundary condition implies a discontinuity for any 

function that does not happen to be zero at that 

boundary.) In contrast, a DCT where both boundaries 

are even always yields a continuous extension at the 

boundaries (although the slope is generally 

discontinuous). This is why DCTs, and in particular 

DCTs of types I, II, V, and VI (the types that have two 

even boundaries) generally perform better for signal 

compression than DFTs and DSTs. In practice, a type-II 

DCT is usually preferred for such applications, in part 

for reasons of computational convenience. 

 

Disadvantages 

 It is complex 

 It has poor energy compaction 

 

2. Proposed Methods 

 

In existing method we have used discrete wavelet 

transformation method which is used for the image only 

with high accuracy to overcome this drawback we are 

here introducing a method called lifting wavelet 

transform which is used to extract or transfer the images 

with both high and low accuracy.  

A. Lifting Wavelet Transform: 

The lifting scheme is a technique for both designing 

wavelets and performing the discrete wavelet transform. 

Actually it is worthwhile to merge these steps and 
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design the wavelet filters while performing the wavelet 

transform. This is then called the second generation 

wavelet transform. The technique was introduced by 

Wim Sweldens. 

The discrete wavelet transform applies several filters 

separately to the same signal. In contrast to that, for the 

lifting scheme the signal is divided like a zipper. Then a 

series of convolution-accumulate operations across the 

divided signals is applied. 

The basic idea of lifting is the following: If a pair of 

filters  is complementary, that is it allows for 

perfect reconstruction, then for every filter  the pair 

 with  allows for 

perfect reconstruction, too. Of course, this is also true 

for every pair  of the form

. The converse is also 

true: If the filter banks  and  allow for perfect 

reconstruction, then there is a unique filter  with

. 

Each such transform of the filter bank (or the respective 

operation in a wavelet transform) is called a lifting step. 

A sequence of lifting steps consists of alternating lifts, 

that is, once the lowpass is fixed and the highpass is 

changed and in the next step the highpass is fixed and 

the lowpass is changed. Successive steps of the same 

direction can be merged. 

 Perfect reconstruction 

 Every transform by the lifting scheme can be 

inverted. 

 Every perfect reconstruction filter bank can be 

decomposed into lifting steps by the Euclidean 

algorithm. 

 That is, "lifting decomposable filter bank" and 

"perfect reconstruction filter bank" denotes the 

same. 

 Every two perfect reconstructable filter banks can be 

transformed into each other by a sequence of lifting 

steps. (If  and  are polyphase matrices with the 

same determinant, the lifting sequence from  to , 

is the same as the one from the lazy polyphase 

matrix  to .) 

 Speedup by a factor of two: This is only possible 

because lifting is restricted to perfect reconstruction 

filterbanks. That is, lifting somehow squeezes out 

redundancies caused by perfect reconstructability. 

 In place: The transformation can be performed 

immediately in the memory of the input data with 

only constant memory overhead. 

 Non-linearities: The convolution operations can be 

replaced by any other operation. For perfect 

reconstruction only the invertibility of the addition 

operation is relevant. This way rounding errors in 

convolution can be tolerated and bit-exact 

reconstruction is possible. However the numeric 

stability may be reduced by the non-linearities. This 

must be respected if the transformed signal is 

processed like in lossy compression. 

Although every reconstruct able filter bank can be 

expressed in terms of lifting steps, a general description 

of the lifting steps is not obvious from a description of a 

wavelet family. However, for instance for simple cases 

of the Cohen-Daubechies-Feauveau wavelet, there is an 

explicit formula for their lifting steps.  

B. Embedding method 

A digital watermarking method is referred to as spread-

spectrum if the marked signal is obtained by an additive 

modification. Spread-spectrum watermarks
 
are known to 

be modestly robust, but also to have a low information 

capacity due to host interference. 

A digital watermarking method is said to be of 

quantization type if the marked signal is obtained by 

quantization. Quantization watermarks suffer from low 

robustness, but have a high information capacity due to 

rejection of host interference. 

A digital watermarking method is referred to as 

amplitude modulation if the marked signal is embedded 

by additive modification which is similar to spread 

spectrum method, but is particularly embedded in the 

spatial domain. 

A digital watermark is called robust with respect to 

transformations if the embedded information may be 

detected reliably from the marked signal, even if 

degraded by any number of transformations. Typical 

image degradations are JPEG compression, rotation, 

cropping, additive noise, and quantization. For video 

content, temporal modifications and MPEG compression 

often are added to this list. A digital watermark is called 

imperceptible if the watermarked content is perceptually 
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equivalent to the original, unwatermarked content. In 

general, it is easy to create either robust watermarks or 

imperceptible watermarks, but the creation of both 

robust and imperceptible watermarks has proven to be 

quite challenging. Robust imperceptible watermarks 

have been proposed as a tool for the protection of digital 

content, for example as an embedded no-copy-allowed 

flag in professional video content. 

Digital watermarking techniques may be classified in 

several ways. 

 
Figure 1. Watermark Embedding and Encoding Process 

 
Figure 2. Watermark Decoding 

 

 

III. RESULTS AND DISCUSSION 

 

A. Robustness 

 

A digital watermark is called "fragile" if it fails to be 

detectable after the slightest modification. Fragile 

watermarks are commonly used for tamper detection 

(integrity proof). Modifications to an original work that 

clearly are noticeable commonly are not referred to as 

watermarks, but as generalized barcodes. 

A digital watermark is called semi-fragile if it resists 

benign transformations, but fails detection after 

malignant transformations. Semi-fragile watermarks 

commonly are used to detect malignant transformations. 

A digital watermark is called robust if it resists a 

designated class of transformations. Robust watermarks 

may be used in copy protection applications to carry 

copy and no access control information. 

B. Perceptibility 

 

A digital watermark is called imperceptible if the 

original cover signal and the marked signal are 

perceptually indistinguishable. 

A digital watermark is called perceptible if its presence 

in the marked signal is noticeable (e.g. Digital On-screen 

Graphics like a Network Logo, Content Bug, Codes, 

Opaque images). On videos and images, some are made 

transparent/translucent for convince for people due to 

the fact that they block portion of the view. 

This should not be confused with perceptual, that is, 

watermarking which uses the limitations of human 

perception to be imperceptible. 

C. Capacity 

 

The length of the embedded message determines two 

different main classes of digital watermarking schemes: 

 The message is conceptually zero-bit long and the 

system is designed in order to detect the presence or 

the absence of the watermark in the marked object. 

This kind of watermarking scheme is usually referred 

to as zero-bit or presence watermarking schemes. 

Sometimes, this type of watermarking scheme is 

called 1-bit watermark, because a 1 denotes the 

presence (and a 0 the absence) of a watermark. 

 The message is an n-bit-long stream

with  or  and is modulated in the 

watermark. These kinds of schemes usually are 

referred to as multiple-bit watermarking or non-zero-

bit watermarking schemes. 

 

Reversible data hiding is a technique which enables 

images to be authenticated and then restored to their 

original form by removing the digital watermark and 

replacing the image data that had been overwritten. This 

would make the images acceptable for legal purposes. 

The U.S. Army also is interested in this technique for 

authentication of reconnaissance images. 

 

Table 1. PSNR 

 

Methods  PSNR(db) 

Histogram shifting 

technique 

72.41 
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Haar wavelet transform 78.62 

Sorting technique 74.81 

Optimal histogram pair 

shifting  

78.00 

Dynamic prediction error 

histogram shifting 

79.06 

Duality approach  39.10 

DWT-DFT composite 

watermarking 

41.10 

DWT method 41.1 

DCT 26.44 

Non-Linear Regression 8.45 

 

 

 
Figure 1. Input Image 

 

 
Figure 2. Gray Image 

 

 
Figure 3. Watermarked Image 

 

 
Figure 4. Watermarked with LWT 

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

1245 

 
Figure 5. Filtered Image 

 

 

 
Figure 6. Secret Image 

 

 
Figure 7. Histogram Construction for Host Image 

 

 
Figure 8. Histogram Construction for Secret Image 

 

 

 
Figure 9. BER 

 

 
Figure 10. PSNR-Beta 
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Figure 11. PSNR-Alpha 

 

IV. CONCLUSION 

 
The attacks are removed using, a Gaussian low-pass 

filter which is employed to pre-process the host image 

such that watermarks will only be embedded into the 

High frequency component of the host image. To tackle 

the attacks like cropping attacks, a histogram, shape, 

related index is utilized to form and select the most 

suitable pixel groups for watermark embedding. In 

addition, a safe band is introduced between the selected 

pixel groups and the non-selected pixel groups to 

improve robustness. In this paper, LWT is proposed to 

improve the robustness of the host image. It can be 

further verified to improve the efficiency to extract the 

secret image from the host image. Due to the usage of 

secret key, the proposed watermarking method is also 

secure.  
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