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ABSTRACT 
 

This Big data is useful for data sets where their size or type is away from the capability of traditional relational 

databases for capturing, managing and processing the data with low-latency.  Relational databases were not 

designed to cope with the scale and agility challenges that face modern applications, nor were they built to take 

advantage of the commodity storage and processing power available today. NoSQL encompasses a wide variety of 

different database technologies that were developed in response to the demands presented in building modern 

applications.  In this paper collection of NoSQL  database tools are illustrated and also compared with the salient 

features. 
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I. INTRODUCTION 

 

Analyzing data can provide significant competitive 

advantage for an enterprise. The data when analyzed 

properly leads to a wealth of information which helps 

the businesses to redefine strategies. However the 

current volume of big data sets are too complicated to be 

managed and processed by conventional relational 

databases & data warehousing technologies. Using 

conventional techniques for Big Data storage and 

analysis is less efficient as memory access is slower. The 

data collection is also challenging as the volume and 

variety of data has to be derived from sources of 

different types [1]. 

 

This widespread demand for solutions, and the 

comparative ease of developing new systems, has led to 

a flowering of new databases. The main thing they have 

in common is that none of them support the traditional 

SQL interface, which has led to the movement being 

dubbed NoSQL. It’s a bit misleading, though, since 

almost every production environment that they’re used 

in also has an SQL-based database for anything that 

requires flexible queries and reliable transactions, and as 

the products mature, it’s likely that some of them will 

start supporting the language as an option. If “NoSQL” 

seems too combative, think of it as “NotOnlySQL.” 

These are all tools designed to trade the reliability and 

ease-of-use of traditional databases for the flexibility 

and performance required by new problems developers 

are encountering. 

 

II. METHODS AND MATERIAL 

 

1. Big Data Processing 

 

Big data processing is achieved through kafka queues. 

Multiple data from various sources goes through the 

queue and is moved to either a NoSQL data store or 

HDFS. Depending on the data store we can write 

NoSQL queries or map reduce programs to extract the 

data and create reports for enabling business decisions as 

shown in Fig. 1. Performance measurement is important 

to support decision making and action taking in 

organizations [2]. It should be as dynamic as possible to 

keep pace with changes that happen in organizations. 

Therefore, it must be aligned to the organizations 

strategies and should be reviewed periodically [3].  

 

Big data is not only large amount of data but there are 

various other features which create big difference 

between large amount of data and massive data. There 

are various definitions regarding big data and about how 

big data is viewed, all these definitions are discussed 

below categorically. 
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Figure 1: Big Data Processing 

 

A. Attributive 

 As report given by IDC in 2011, big data extract the 

value from large amount of data by capturing high 

velocity data which further led to change of definition in 

big data which includes velocity, volume, variety and 

value. Further META group analyst noted big data as 

only three dimensional, velocity, volume and variety  

B. Comparative  

 

Mckinsey's report in 2011 defined bigdata as large data 

which makes it difficult to capture, store and analyze the 

data. This definition did not define bigdata properly. 

However it gave evolutionary aspect regarding bigdata  

C. Architectural 

As suggested by national institute of standard and 

technology (NIST), large velocity, volume and variety 

of data coined as bigdata limits its ability to use 

relational database system due to such features and 

require new technological means and horizontal scaling 

for processing and storing data [4]. Bigdata is further 

divided into two views as bigdata science and bigdata 

framework. Bigdata science covers techniques for 

evaluation of bigdata and bigdata framework covers 

algorithms and software libraries that help in distributed 

processing of bigdata across various clusters. 

 

2. NOSQL Database Types 

A. Document Databases 

 

These databases pair each key with a complex data 

structure known as a document. Documents can contain 

many different key-value pairs, or key-array pairs, or 

even nested documents. 

 

B. Graph Stores 

 

These are used to store information about networks of 

data, such as social connections. Graph stores include 

Neo4J and Giraph. 

 

C. Key-value Stores  

 

These databases are the simplest NoSQL databases. 

Every single item in the database is stored as an attribute 

name (or "key"), together with its value. Examples of 

key-value stores are Riak and Berkeley DB [5]. Some 

key-value stores, such as Redis, allow each value to 

have a type, such as "integer", which adds functionality. 

 

D. Wide-column stores  

 

This type databases such as Cassandra and HBase are 

optimized for queries over large datasets, and store 

columns of data together, instead of rows. 

 

3. Various  NoSQL Databases Tools 

 

With so many different systems appearing, such a 

variety of design tradeoffs, and such a short track record 

for most, this list is inevitably incomplete and somewhat 

subjective. I’ll be providing a summary of my own 

experiences with and impressions of each database, but I 

encourage you to check out their official web pages to 

get the most up-todate and complete view. 

 

A. MongoDB 

 

Mongo, whose name comes from "humongous”, is a 

database aimed at developers with fairly large data sets, 

but who want something that’s low maintenance and 

easy to work with. It’s a document-oriented system, with 

records that look similar to JSON objects with the ability 

to store and query on nested attributes. From my own 

experience, a big advantage is the proactive support 

from the developers employed by 10gen, the commercial 

company that originated and supports the open source 

project [6]. I’ve always had quick and helpful responses 

Kafka 

Queues 

Index the 

Data 

NoSQL 

Database 

Input Data 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 

1185 

both on the IRC channel and mailing list, something 

that’s crucial when you’re dealing with comparatively 

young technologies like these. It supports automatic 

sharding and MapReduce operations. Queries are written 

in JavaScript, with an interactive shell available, and 

bindings for all of the other popular languages. 

 

B. CouchDB 

 

CouchDB is similar in many ways to MongoDB, as a 

document-oriented database with a JavaScript interface, 

but it differs in how it supports querying, scaling, and 

versioning. It uses a multiversion concurrency control 

approach, which helps with problems that require access 

to the state of data at various times, but it does involve 

more work on the client side to handle clashes on writes, 

and periodic garbage collection cycles have to be run to 

remove old data. It doesn’t have a good built-in method 

for horizontal scalability, but there are various external 

solutions like BigCouch, Lounge, and Pillow to handle 

splitting data and processing across a cluster of 

machines [7]. You query the data by writing JavaScript 

MapReduce functions called views, an approach that 

makes it easy for the system to do the processing in a 

distributed way. Views 

offer a lot of power and flexibility, but they can be a bit 

overwhelming for simple queries. 

 

C. Cassandra 

 

Originally an internal Facebook project, Cassandra was 

open sourced a few years ago and has become the 

standard distributed database for situations where it’s 

worth investing the time to learn a complex system in 

return for a lot of power and flexibility. Traditionally, it 

was a long struggle just to set up a working cluster, but 

as the project matures, that has become a lot easier. 

It’s a distributed key/value system, with highly 

structured values that are held in a hierarchy similar to 

the classic database/table levels, with the equivalents 

being keyspaces and column families. It’s very close to 

the data model used by Google’s BigTable, which you 

can find described in “BigTable” on page 8. By default, 

the data is sharded and balanced automatically using 

consistent hashing on key ranges, though other schemes 

can be configured. The data structures are optimized for 

consistent write performance, at the cost of occasionally 

slow read operations. One very useful feature is the 

ability to specify how many nodes must agree before a 

read or write operation completes. Setting the 

consistency level allows you to tune the CAP tradeoffs 

for your particular application, to prioritize speed over 

consistency or vice versa  

The lowest-level interface to Cassandra is through Thrift, 

but there are friendlier clients available for most major 

languages. The recommended option for running queries 

is through Hadoop. You can install Hadoop directly on 

the same cluster to ensure locality of access, and there’s 

also a distribution of Hadoop integrated with Cassandra 

available from DataStax [8]. There is a command-line 

interface that lets you perform basic administration tasks, 

but it’s quite bare bones. It is recommended that you 

choose initial tokens when you first set up your cluster, 

but otherwise the decentralized architecture is fairly 

low-maintenance, barring major problems. 

 

D. Redis 

 

Two features make Redis stand out: it keeps the entire 

database in RAM, and its values can be complex data 

structures. Though the entire dataset is kept in memory, 

it’s also backed up on disk periodically, so you can use it 

as a persistent database. This approach does offer fast 

and predictable performance, but speed falls off a cliff if 

the size of your data expands beyond available memory 

and the operating system starts paging virtual memory to 

handle accesses. This won’t be a problem if you have 

small or predictably sized storage needs, but it does 

require a bit of forward planning as you’re developing 

applications. You can deal with larger data sets by 

clustering multiple machines together, but the sharding 

is currently handled at the client level. There is an 

experimental branch of the code under active 

development that supports clustering at the server level. 

The support for complex data structures is impressive, 

with a large number of list and set operations handled 

quickly on the server side. It makes it easy to do things 

like appending to the end of a value that’s a list, and 

then trim the list so that it only holds the most recent 100 

items. These capabilities do make it easier to limit the 

growth of your data than it would be in most systems, as 

well as making life easier for application developers. 

 

E. BigTable 

 

BigTable is only available to developers outside Google 

as the foundation of the App Engine datastore. Despite 
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that, as one of the pioneering alternative databases, it’s 

worth looking at. 

It has a more complex structure and interface than many 

NoSQL datastores, with a hierarchy and 

multidimensional access. The first level, much like 

traditional relational databases, is a table holding data. 

Each table is split into multiple rows, with each row 

addressed with a unique key string. The values inside the 

row are arranged into cells, with each cell identified by a 

column family identifier, a column name, and a 

timestamp, each of which I’ll explain below. The row 

keys are stored in ascending order within file chunks 

called shards. This ensures that operations accessing 

continuous ranges of keys are efficient, though it does 

mean you have to think about the likely order you’ll be 

reading your keys in. Column names are confusingly not 

much like column names in a relational database [9]. 

They are defined dynamically, rather than specified 

ahead of time, and they often hold actual data 

themselves. If a column family represented inbound 

links to a page, the column name might be the URL of 

the page that the link is from, with the cell contents 

holding the link’s text. The timestamp allows a given 

cell to have multiple versions over time, as well as 

making it possible to expire or garbage collect old data. 

A given piece of data can be uniquely addressed by 

looking in a table for the full identifier that conceptually 

looks like row key, then column family, then column 

name, and finally timestamp. You can easily read all the 

values for a given row key in a particular column family, 

so you could actually think of the column family as 

being the closest comparison to a column in a relational 

database. As you might expect from Google, BigTable is 

designed to handle very large data loads by running on 

big clusters of commodity hardware. It has per-row 

transaction guarantees, but it doesn’t offer any way to 

atomically alter larger numbers of rows. It uses the 

Google File System as its underlying storage, which 

keeps redundant copies of all the persistent files so that 

failures can be recovered from. 

 

F. HBase 

 

HBase was designed as an open source clone of 

Google’s BigTable, so unsurprisingly it has a very 

similar interface, and it relies on a clone of the Google 

File System called HDFS. It supports the same data 

structure of tables, row keys, column families, column 

names, timestamps, and cell values, though it is 

recommended that each table have no more than two or 

three families for performance reasons. 

  

HBase is well integrated with the main Hadoop project, 

so it’s easy to write and read to the database from a 

MapReduce job running on the system. One thing to 

watch out for is that the latency on individual reads and 

writes can be comparatively slow, since it’s a distributed 

system and the operations will involve some network 

traffic. HBase is at its best when it’s accessed in a 

distributed fashion by many clients. If you’re doing 

serialized reads and writes you may need to think about 

a caching strategy. 

 

G. Hypertable 

 

Hypertable is another open source clone of BigTable. 

It’s written in C++, rather than Java like HBase, and has 

focused its energies on high performance [10]. 

Otherwise, its interface follows in BigTable’s footsteps, 

with the same column family and timestamping concepts. 

 

H. Voldemort 

 

An open source clone of Amazon’s Dynamo database 

created by LinkedIn, Voldemort has a classic three-

operation key/value interface, but with sophisticated 

backend architecture to handle running on large 

distributed clusters. It uses consistent hashing to allow 

fast lookups of the storage locations for particular keys, 

and it has versioning control to handle inconsistent 

values. A read operation may actually return multiple 

values for a given key if they were written by different 

clients at nearly the same time. This then puts the burden 

on the application to take some sensible recovery actions 

when it gets multiple values, based on its knowledge of 

the meaning of the data being written [11]. The example 

that Amazon uses is a shopping cart, where the set of 

items could be unioned together, losing any deliberate 

deletions but retaining any added items, which obviously 

makes sense—from a revenue perspective, at least! 

 

I. Riak 

 

Like Voldemort, Riak was inspired by Amazon’s 

Dynamo database, and it offers a key/value interface and 

is designed to run on large distributed clusters. It also 

uses consistent hashing and a gossip protocol to avoid 

the need for the kind of centralized index server that 
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BigTable requires, along with versioning to handle 

update conflicts. Querying is handled using MapReduce 

functions written in either Erlang or JavaScript. It’s open 

source under an Apache license, but there’s also a closed 

source commercial version with some special features 

designed for enterprise customers. 

 

J. ZooKeeper 

 

When you’re running a service distributed across a large 

cluster of machines, even tasks like reading 

configuration information, which are simple on single-

machine systems, can be hard to implement reliably. The 

ZooKeeper framework was originally built at Yahoo! to 

make it easy for the company’s applications to access 

configuration information in a robust and easy-to-

understand way, but it has since grown to offer a lot of 

features that help coordinate work across distributed 

clusters. One way to think of it is as a very specialized 

key/value store, with an interface that looks a lot like a 

filesystem and supports operations like watching 

callbacks, write consensus, and transaction IDs that are 

often needed for coordinating distributed algorithms. 

 

This has allowed it to act as a foundation layer for 

services like LinkedIn’s Norbert, a flexible framework 

for managing clusters of machines. ZooKeeper itself is 

built to run in a distributed way across a number of 

machines, and it’s designed to offer very fast reads, at 

the expense of writes that get slower the more servers 

are used to host the service [12]. 

 

 

III. RESULTS AND DISCUSSION 
 

Comparison of SQL and NoSQL Databases 

 

Various general and development features of SQL 

and NoSQL databases are compared in table 1. This 

comparison highlights the importance of NOSQL 

databases in current big data scenario. 

 

Table 1 Comparison of SQL and NoSQL Databases 

 

Features SQL Databases NOSQL 

Databases 

Types of 

Databases 

One type (SQL 

database) with minor 

variations 

Many different 

types including 

key-value 

stores, document 

databases, wide-

column stores, and 

graph databases 

Development 

History 

Developed in 1970s 

to deal with first 

wave of data storage 

applications 

Developed in late 

2000s to deal with 

limitations of SQL 

databases, 

especially 

scalability, multi-

structured data, 

geo-distribution 

and agile 

development 

sprints 

Examples MySQL, Postgres, 

Microsoft SQL 

Server, Oracle 

Database 

MongoDB, 

Cassandra, HBase, 

Neo4j 

Data Storage 

Model 

Individual records 

(e.g., "employees") 

are stored as rows in 

tables, with each 

column storing a 

specific piece of 

data about that 

record (e.g., 

"manager," "date 

hired," etc.), much 

like a spreadsheet. 

Related data is 

stored in separate 

tables, and then 

joined together when 

more complex 

queries are executed. 

For example, 

"offices" might be 

stored in one table, 

and "employees" in 

another. When a 

user wants to find 

the work address of 

an employee, the 

database engine 

joins the "employee" 

and "office" tables 

together to get all 

the information 

necessary. 

Varies based on 

database type. For 

example, key-

value stores 

function similarly 

to SQL databases, 

but has only two 

columns ("key" 

and "value"), with 

more complex 

information 

sometimes stored 

as BLOBs within 

the "value" 

columns. 

Document 

databases do away 

with the table-and-

row model 

altogether, storing 

all relevant data 

together in single 

"document" in 

JSON, XML, or 

another format, 

which can nest 

values 

hierarchically. 

Schemas Structure and data 

types are fixed in 

advance. To store 

information about a 

new data item, the 

entire database must 

be altered, during 

which time the 

database must be 

taken offline. 

Typically 

dynamic, with 

some enforcing 

data validation 

rules. Applications 

can add new fields 

on the fly, and 

unlike SQL table 

rows, dissimilar 

data can be stored 

together as 

necessary. For 
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some databases 

(e.g., wide-column 

stores), it is 

somewhat more 

challenging to add 

new fields 

dynamically. 

Scaling Vertically, meaning 

a single server must 

be made 

increasingly 

powerful in order to 

deal with increased 

demand. It is 

possible to spread 

SQL databases over 

many servers, but 

significant 

additional 

engineering is 

generally required, 

and core relational 

features such as 

JOINs, referential 

integrity and 

transactions are 

typically lost. 

Horizontally, 

meaning that to 

add capacity, a 

database 

administrator can 

simply add more 

commodity servers 

or cloud instances. 

The database 

automatically 

spreads data across 

servers as 

necessary. 

Development 

Model 

Mix of open-source 

(e.g., Postgres, 

MySQL) and closed 

source (e.g., Oracle 

Database) 

Open-source 

Supports 

Transactions 

Yes, updates can be 

configured to 

complete entirely or 

not at all 

In certain 

circumstances and 

at certain levels 

(e.g., document 

level vs. database 

level) 

Data 

Manipulation 

Specific language 

using Select, Insert, 

and Update 

statements, e.g. 

SELECT fields 

FROM table 

WHERE… 

Through object-

oriented APIs 

Consistency Can be configured 

for strong 

consistency 

Depends on 

product. Some 

provide strong 

consistency (e.g., 

MongoDB, with 

tunable 

consistency for 

reads) whereas 

others offer 

eventual 

consistency (e.g., 

Cassandra). 

 

 

 

IV. CONCLUSION 

 
This paper provides an introduction to big data and 

various database tools that are currently being used by 

the developers along with the comparison of SQL and 

NoSQL database tools. NoSQL databases are rapidly 

replacing the SQL databases in big data scenario due to 

the no of advantages they provide. A large number of 

NoSQL database tools have emerged in a short span of 

time and it seems that this trend will continue in the time 

to come. 
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