
IJSRSET1622405 | Received : 30 April 2016 | Accepted : 03 May 2016 | March-April 2016 [(2)2: 1183-1188]

© 2016 IJSRSET | Volume 2 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

1183

NoSQL : A New Horizon in Big Data
Amarbir Singh

Department of Computer Science, Guru Nanak Dev University, Amritsar, Punjab, India

ABSTRACT

This Big data is useful for data sets where their size or type is away from the capability of traditional relational

databases for capturing, managing and processing the data with low-latency. Relational databases were not

designed to cope with the scale and agility challenges that face modern applications, nor were they built to take

advantage of the commodity storage and processing power available today. NoSQL encompasses a wide variety of

different database technologies that were developed in response to the demands presented in building modern

applications. In this paper collection of NoSQL database tools are illustrated and also compared with the salient

features.

Keywords: Big data, NoSQL, MangoDb, Data analysis, Data visualization, Redis

I. INTRODUCTION

Analyzing data can provide significant competitive

advantage for an enterprise. The data when analyzed

properly leads to a wealth of information which helps

the businesses to redefine strategies. However the

current volume of big data sets are too complicated to be

managed and processed by conventional relational

databases & data warehousing technologies. Using

conventional techniques for Big Data storage and

analysis is less efficient as memory access is slower. The

data collection is also challenging as the volume and

variety of data has to be derived from sources of

different types [1].

This widespread demand for solutions, and the

comparative ease of developing new systems, has led to

a flowering of new databases. The main thing they have

in common is that none of them support the traditional

SQL interface, which has led to the movement being

dubbed NoSQL. It’s a bit misleading, though, since

almost every production environment that they’re used

in also has an SQL-based database for anything that

requires flexible queries and reliable transactions, and as

the products mature, it’s likely that some of them will

start supporting the language as an option. If “NoSQL”

seems too combative, think of it as “NotOnlySQL.”

These are all tools designed to trade the reliability and

ease-of-use of traditional databases for the flexibility

and performance required by new problems developers

are encountering.

II. METHODS AND MATERIAL

1. Big Data Processing

Big data processing is achieved through kafka queues.

Multiple data from various sources goes through the

queue and is moved to either a NoSQL data store or

HDFS. Depending on the data store we can write

NoSQL queries or map reduce programs to extract the

data and create reports for enabling business decisions as

shown in Fig. 1. Performance measurement is important

to support decision making and action taking in

organizations [2]. It should be as dynamic as possible to

keep pace with changes that happen in organizations.

Therefore, it must be aligned to the organizations

strategies and should be reviewed periodically [3].

Big data is not only large amount of data but there are

various other features which create big difference

between large amount of data and massive data. There

are various definitions regarding big data and about how

big data is viewed, all these definitions are discussed

below categorically.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

1184

Figure 1: Big Data Processing

A. Attributive

 As report given by IDC in 2011, big data extract the

value from large amount of data by capturing high

velocity data which further led to change of definition in

big data which includes velocity, volume, variety and

value. Further META group analyst noted big data as

only three dimensional, velocity, volume and variety

B. Comparative

Mckinsey's report in 2011 defined bigdata as large data

which makes it difficult to capture, store and analyze the

data. This definition did not define bigdata properly.

However it gave evolutionary aspect regarding bigdata

C. Architectural

As suggested by national institute of standard and

technology (NIST), large velocity, volume and variety

of data coined as bigdata limits its ability to use

relational database system due to such features and

require new technological means and horizontal scaling

for processing and storing data [4]. Bigdata is further

divided into two views as bigdata science and bigdata

framework. Bigdata science covers techniques for

evaluation of bigdata and bigdata framework covers

algorithms and software libraries that help in distributed

processing of bigdata across various clusters.

2. NOSQL Database Types

A. Document Databases

These databases pair each key with a complex data

structure known as a document. Documents can contain

many different key-value pairs, or key-array pairs, or

even nested documents.

B. Graph Stores

These are used to store information about networks of

data, such as social connections. Graph stores include

Neo4J and Giraph.

C. Key-value Stores

These databases are the simplest NoSQL databases.

Every single item in the database is stored as an attribute

name (or "key"), together with its value. Examples of

key-value stores are Riak and Berkeley DB [5]. Some

key-value stores, such as Redis, allow each value to

have a type, such as "integer", which adds functionality.

D. Wide-column stores

This type databases such as Cassandra and HBase are

optimized for queries over large datasets, and store

columns of data together, instead of rows.

3. Various NoSQL Databases Tools

With so many different systems appearing, such a

variety of design tradeoffs, and such a short track record

for most, this list is inevitably incomplete and somewhat

subjective. I’ll be providing a summary of my own

experiences with and impressions of each database, but I

encourage you to check out their official web pages to

get the most up-todate and complete view.

A. MongoDB

Mongo, whose name comes from "humongous”, is a

database aimed at developers with fairly large data sets,

but who want something that’s low maintenance and

easy to work with. It’s a document-oriented system, with

records that look similar to JSON objects with the ability

to store and query on nested attributes. From my own

experience, a big advantage is the proactive support

from the developers employed by 10gen, the commercial

company that originated and supports the open source

project [6]. I’ve always had quick and helpful responses

Kafka

Queues

Index the

Data

NoSQL

Database

Input Data

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

1185

both on the IRC channel and mailing list, something

that’s crucial when you’re dealing with comparatively

young technologies like these. It supports automatic

sharding and MapReduce operations. Queries are written

in JavaScript, with an interactive shell available, and

bindings for all of the other popular languages.

B. CouchDB

CouchDB is similar in many ways to MongoDB, as a

document-oriented database with a JavaScript interface,

but it differs in how it supports querying, scaling, and

versioning. It uses a multiversion concurrency control

approach, which helps with problems that require access

to the state of data at various times, but it does involve

more work on the client side to handle clashes on writes,

and periodic garbage collection cycles have to be run to

remove old data. It doesn’t have a good built-in method

for horizontal scalability, but there are various external

solutions like BigCouch, Lounge, and Pillow to handle

splitting data and processing across a cluster of

machines [7]. You query the data by writing JavaScript

MapReduce functions called views, an approach that

makes it easy for the system to do the processing in a

distributed way. Views

offer a lot of power and flexibility, but they can be a bit

overwhelming for simple queries.

C. Cassandra

Originally an internal Facebook project, Cassandra was

open sourced a few years ago and has become the

standard distributed database for situations where it’s

worth investing the time to learn a complex system in

return for a lot of power and flexibility. Traditionally, it

was a long struggle just to set up a working cluster, but

as the project matures, that has become a lot easier.

It’s a distributed key/value system, with highly

structured values that are held in a hierarchy similar to

the classic database/table levels, with the equivalents

being keyspaces and column families. It’s very close to

the data model used by Google’s BigTable, which you

can find described in “BigTable” on page 8. By default,

the data is sharded and balanced automatically using

consistent hashing on key ranges, though other schemes

can be configured. The data structures are optimized for

consistent write performance, at the cost of occasionally

slow read operations. One very useful feature is the

ability to specify how many nodes must agree before a

read or write operation completes. Setting the

consistency level allows you to tune the CAP tradeoffs

for your particular application, to prioritize speed over

consistency or vice versa

The lowest-level interface to Cassandra is through Thrift,

but there are friendlier clients available for most major

languages. The recommended option for running queries

is through Hadoop. You can install Hadoop directly on

the same cluster to ensure locality of access, and there’s

also a distribution of Hadoop integrated with Cassandra

available from DataStax [8]. There is a command-line

interface that lets you perform basic administration tasks,

but it’s quite bare bones. It is recommended that you

choose initial tokens when you first set up your cluster,

but otherwise the decentralized architecture is fairly

low-maintenance, barring major problems.

D. Redis

Two features make Redis stand out: it keeps the entire

database in RAM, and its values can be complex data

structures. Though the entire dataset is kept in memory,

it’s also backed up on disk periodically, so you can use it

as a persistent database. This approach does offer fast

and predictable performance, but speed falls off a cliff if

the size of your data expands beyond available memory

and the operating system starts paging virtual memory to

handle accesses. This won’t be a problem if you have

small or predictably sized storage needs, but it does

require a bit of forward planning as you’re developing

applications. You can deal with larger data sets by

clustering multiple machines together, but the sharding

is currently handled at the client level. There is an

experimental branch of the code under active

development that supports clustering at the server level.

The support for complex data structures is impressive,

with a large number of list and set operations handled

quickly on the server side. It makes it easy to do things

like appending to the end of a value that’s a list, and

then trim the list so that it only holds the most recent 100

items. These capabilities do make it easier to limit the

growth of your data than it would be in most systems, as

well as making life easier for application developers.

E. BigTable

BigTable is only available to developers outside Google

as the foundation of the App Engine datastore. Despite

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

1186

that, as one of the pioneering alternative databases, it’s

worth looking at.

It has a more complex structure and interface than many

NoSQL datastores, with a hierarchy and

multidimensional access. The first level, much like

traditional relational databases, is a table holding data.

Each table is split into multiple rows, with each row

addressed with a unique key string. The values inside the

row are arranged into cells, with each cell identified by a

column family identifier, a column name, and a

timestamp, each of which I’ll explain below. The row

keys are stored in ascending order within file chunks

called shards. This ensures that operations accessing

continuous ranges of keys are efficient, though it does

mean you have to think about the likely order you’ll be

reading your keys in. Column names are confusingly not

much like column names in a relational database [9].

They are defined dynamically, rather than specified

ahead of time, and they often hold actual data

themselves. If a column family represented inbound

links to a page, the column name might be the URL of

the page that the link is from, with the cell contents

holding the link’s text. The timestamp allows a given

cell to have multiple versions over time, as well as

making it possible to expire or garbage collect old data.

A given piece of data can be uniquely addressed by

looking in a table for the full identifier that conceptually

looks like row key, then column family, then column

name, and finally timestamp. You can easily read all the

values for a given row key in a particular column family,

so you could actually think of the column family as

being the closest comparison to a column in a relational

database. As you might expect from Google, BigTable is

designed to handle very large data loads by running on

big clusters of commodity hardware. It has per-row

transaction guarantees, but it doesn’t offer any way to

atomically alter larger numbers of rows. It uses the

Google File System as its underlying storage, which

keeps redundant copies of all the persistent files so that

failures can be recovered from.

F. HBase

HBase was designed as an open source clone of

Google’s BigTable, so unsurprisingly it has a very

similar interface, and it relies on a clone of the Google

File System called HDFS. It supports the same data

structure of tables, row keys, column families, column

names, timestamps, and cell values, though it is

recommended that each table have no more than two or

three families for performance reasons.

HBase is well integrated with the main Hadoop project,

so it’s easy to write and read to the database from a

MapReduce job running on the system. One thing to

watch out for is that the latency on individual reads and

writes can be comparatively slow, since it’s a distributed

system and the operations will involve some network

traffic. HBase is at its best when it’s accessed in a

distributed fashion by many clients. If you’re doing

serialized reads and writes you may need to think about

a caching strategy.

G. Hypertable

Hypertable is another open source clone of BigTable.

It’s written in C++, rather than Java like HBase, and has

focused its energies on high performance [10].

Otherwise, its interface follows in BigTable’s footsteps,

with the same column family and timestamping concepts.

H. Voldemort

An open source clone of Amazon’s Dynamo database

created by LinkedIn, Voldemort has a classic three-

operation key/value interface, but with sophisticated

backend architecture to handle running on large

distributed clusters. It uses consistent hashing to allow

fast lookups of the storage locations for particular keys,

and it has versioning control to handle inconsistent

values. A read operation may actually return multiple

values for a given key if they were written by different

clients at nearly the same time. This then puts the burden

on the application to take some sensible recovery actions

when it gets multiple values, based on its knowledge of

the meaning of the data being written [11]. The example

that Amazon uses is a shopping cart, where the set of

items could be unioned together, losing any deliberate

deletions but retaining any added items, which obviously

makes sense—from a revenue perspective, at least!

I. Riak

Like Voldemort, Riak was inspired by Amazon’s

Dynamo database, and it offers a key/value interface and

is designed to run on large distributed clusters. It also

uses consistent hashing and a gossip protocol to avoid

the need for the kind of centralized index server that

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

1187

BigTable requires, along with versioning to handle

update conflicts. Querying is handled using MapReduce

functions written in either Erlang or JavaScript. It’s open

source under an Apache license, but there’s also a closed

source commercial version with some special features

designed for enterprise customers.

J. ZooKeeper

When you’re running a service distributed across a large

cluster of machines, even tasks like reading

configuration information, which are simple on single-

machine systems, can be hard to implement reliably. The

ZooKeeper framework was originally built at Yahoo! to

make it easy for the company’s applications to access

configuration information in a robust and easy-to-

understand way, but it has since grown to offer a lot of

features that help coordinate work across distributed

clusters. One way to think of it is as a very specialized

key/value store, with an interface that looks a lot like a

filesystem and supports operations like watching

callbacks, write consensus, and transaction IDs that are

often needed for coordinating distributed algorithms.

This has allowed it to act as a foundation layer for

services like LinkedIn’s Norbert, a flexible framework

for managing clusters of machines. ZooKeeper itself is

built to run in a distributed way across a number of

machines, and it’s designed to offer very fast reads, at

the expense of writes that get slower the more servers

are used to host the service [12].

III. RESULTS AND DISCUSSION

Comparison of SQL and NoSQL Databases

Various general and development features of SQL

and NoSQL databases are compared in table 1. This

comparison highlights the importance of NOSQL

databases in current big data scenario.

Table 1 Comparison of SQL and NoSQL Databases

Features SQL Databases NOSQL

Databases

Types of

Databases

One type (SQL

database) with minor

variations

Many different

types including

key-value

stores, document

databases, wide-

column stores, and

graph databases

Development

History

Developed in 1970s

to deal with first

wave of data storage

applications

Developed in late

2000s to deal with

limitations of SQL

databases,

especially

scalability, multi-

structured data,

geo-distribution

and agile

development

sprints

Examples MySQL, Postgres,

Microsoft SQL

Server, Oracle

Database

MongoDB,

Cassandra, HBase,

Neo4j

Data Storage

Model

Individual records

(e.g., "employees")

are stored as rows in

tables, with each

column storing a

specific piece of

data about that

record (e.g.,

"manager," "date

hired," etc.), much

like a spreadsheet.

Related data is

stored in separate

tables, and then

joined together when

more complex

queries are executed.

For example,

"offices" might be

stored in one table,

and "employees" in

another. When a

user wants to find

the work address of

an employee, the

database engine

joins the "employee"

and "office" tables

together to get all

the information

necessary.

Varies based on

database type. For

example, key-

value stores

function similarly

to SQL databases,

but has only two

columns ("key"

and "value"), with

more complex

information

sometimes stored

as BLOBs within

the "value"

columns.

Document

databases do away

with the table-and-

row model

altogether, storing

all relevant data

together in single

"document" in

JSON, XML, or

another format,

which can nest

values

hierarchically.

Schemas Structure and data

types are fixed in

advance. To store

information about a

new data item, the

entire database must

be altered, during

which time the

database must be

taken offline.

Typically

dynamic, with

some enforcing

data validation

rules. Applications

can add new fields

on the fly, and

unlike SQL table

rows, dissimilar

data can be stored

together as

necessary. For

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

1188

some databases

(e.g., wide-column

stores), it is

somewhat more

challenging to add

new fields

dynamically.

Scaling Vertically, meaning

a single server must

be made

increasingly

powerful in order to

deal with increased

demand. It is

possible to spread

SQL databases over

many servers, but

significant

additional

engineering is

generally required,

and core relational

features such as

JOINs, referential

integrity and

transactions are

typically lost.

Horizontally,

meaning that to

add capacity, a

database

administrator can

simply add more

commodity servers

or cloud instances.

The database

automatically

spreads data across

servers as

necessary.

Development

Model

Mix of open-source

(e.g., Postgres,

MySQL) and closed

source (e.g., Oracle

Database)

Open-source

Supports

Transactions

Yes, updates can be

configured to

complete entirely or

not at all

In certain

circumstances and

at certain levels

(e.g., document

level vs. database

level)

Data

Manipulation

Specific language

using Select, Insert,

and Update

statements, e.g.

SELECT fields

FROM table

WHERE…

Through object-

oriented APIs

Consistency Can be configured

for strong

consistency

Depends on

product. Some

provide strong

consistency (e.g.,

MongoDB, with

tunable

consistency for

reads) whereas

others offer

eventual

consistency (e.g.,

Cassandra).

IV. CONCLUSION

This paper provides an introduction to big data and

various database tools that are currently being used by

the developers along with the comparison of SQL and

NoSQL database tools. NoSQL databases are rapidly

replacing the SQL databases in big data scenario due to

the no of advantages they provide. A large number of

NoSQL database tools have emerged in a short span of

time and it seems that this trend will continue in the time

to come.

V. REFERENCES

[1] Sagiroglu, S.; Sinanc, D. ,(20-24 May 2013),"Big

Data: A Review"

[2] Chris Deptula, "With all of the Big Data Tools,

what is the right one for me",

www.openbi.com/blogs/chris%20Deptula,retrieve

d 08/02/14.

[3] http://searchcloudcomputing.techtarget.com/defini

tion/big-data-Big-Data.

[4] Garlasu, D.; Sandulescu, V. ; Halcu, I. ; Neculoiu,

G. ;,(17-19 Jan. 2013),"A Big Data

implementation based on Grid Computing", Grid

Computing

[5] Mukherjee, A.; Datta, J.; Jorapur, R.; Singhvi, R.;

Haloi, S.; Akram, W., (18-22 Dec.,2012) , "Shared

disk big data analytics with Apache Hadoop"

[6] http://dashburst.com/infographic/big-data-

volume.var iety-velocity/

[7] http://www01.ibm.com/software/in/data/bigdata/

Mark Troester(2013), "Big Data Meets Big Data

Analytics", www.sas.com/resources/.../WR46345.

pdf, retrieved 10/02/14.

[8] Brian Runciman(2013), "IT NOW Big Data

Focus, AUTUMN 2013", www.bcs.org, retrieved

03/02/14.

[9] Neil Raden (2012), " Big Data Analytics and

complete Architecture",www.teradata.com/ Big-

Data Analytics", retrieved 15/03/14.

[10] K. Bakshi, "Considerations for Big Data:

Architecture and Approach", Aerospace

Conference IEEE, Big Sky Montana, March 2012.

[11] Sagiroglu, S.; Sinanc, D. ,(20-24 May 2013),"Big

Data: A Review"

[12] Grosso, P. ; de Laat, C. ; Membrey, P.,(20-24 May

2013)," Addressing big data issues in Scientific

Data Infrastructure"

http://www.sas.com/resources/.../WR46345

