On Interval Valued Intuitionistic (S, T)-fuzzy Hv-ideals

Arvind Kumar Sinha¹, Manoj Kumar Dewangan²
Department of Mathematics, NIT Raipur, Chhattisgarh, India

ABSTRACT

Atanassov introduced the concept of the interval valued intuitionistic fuzzy sets. By using this we introduce the notion of interval valued intuitionistic -Hv, fuzzy -ideals of an Hv -ring with respect to a t-norm T and an s-norm S. Also some of their characteristic properties are described. The homomorphic image and the inverse image are investigated.

Keywords: Hv-ideal, interval valued intuitionistic (S, T)-fuzzy Hv-ideal, interval valued intuitionistic (S, T)-fuzzy ideal

I. INTRODUCTION

The concept of hyperstructure was introduced in 1934 by Marty [1]. Hyperstructures have many applications to several branches of pure and applied sciences. Vougiouklis [2] introduced the notion of Hv-structures, and Davvaz [3] surveyed the theory of Hv-structures.

After the introduction of fuzzy sets by Zadeh [4], there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanassov [5] is one among them. For more details on intuitionistic fuzzy sets, we refer the reader to [6, 7].

In [8] Biswas applied the concept of intuitoinistic fuzzy sets to the theory of groups and studied intuitionistic fuzzy subgroups of a group. In [9] Kim et al. introduced the notion of fuzzy subquasigroups of a quasigroup. In [10] Kim and Jun introduced the concept of fuzzy ideals of a semigroup. Zhan et al. [11] introduced the notion of an interval valued intuitionistic (S, T) -fuzzy Hv -submodule of an Hv -module. This paper continues this line of research for fuzzy Hv -ideal of Hv -ring. In this paper, we introduce the notion of interval valued intuitionistic (S, T) -fuzzy Hv -ideals of an Hv -ring and describe the characteristic properties. We give the homomorphic image and the inverse image.

The paper is organized as follows: in section 2 some fundamental definitions on Hv-structures and fuzzy sets are explored, in section 3 we define interval valued intuitionistic (S, T)-fuzzy Hv-ideals and establish some useful properties.

II. METHODS AND MATERIAL

1. Basic Definitions

We first give some basic definitions for proving the further results.

Definition 1.1 [12] Let X be a non-empty set. A mapping \(\mu : X \rightarrow [0,1] \) is called a fuzzy set in X. The complement of \(\mu \), denoted by \(\mu^c \), is the fuzzy set in X given by
\[
\mu^c(x) = 1 - \mu(x) \quad \forall x \in X.
\]

Definition 1.2 [12] Let \(f \) be a mapping from a set X to a set Y. Let \(\mu \) be a fuzzy set in X and \(\lambda \) be a fuzzy set in Y. Then the inverse image \(f^{-1}(\lambda) \) of \(\lambda \) is a fuzzy set in X defined by
\[
f^{-1}(\lambda)(x) = \lambda(f(x)) \quad \forall x \in X.
\]

The image \(f(\mu) \) of \(\mu \) is the fuzzy set in Y defined by
\[f(\mu)(y) = \begin{cases}
\sup_{x \in f^{-1}(y)} \mu(x), & f^{-1}(y) \neq \emptyset \\
0, & \text{otherwise}
\end{cases} \]

For all \(y \in Y \).

Definition 1.3 [12] An intuitionistic fuzzy set \(A \) in a non-empty set \(X \) is an object having the form \(A = \{(x, \mu_a(x), \lambda_a(x)) : x \in X\} \), where the functions \(\mu_a : X \to [0,1] \) and \(\lambda_a : X \to [0,1] \) denote the degree of membership and degree of non-membership of each element \(x \in X \) to the set \(A \) respectively and \(0 \leq \mu_a(x) + \lambda_a(x) \leq 1 \) for all \(x \in X \). We shall use the symbol \(A = \{\mu_a, \lambda_a\} \) for the intuitionistic fuzzy set \(A = \{(x, \mu_a(x), \lambda_a(x)) : x \in X\} \).

Definition 1.4 [12] Let \(A = \{\mu_a, \lambda_a\} \) and \(B = \{\mu_b, \lambda_b\} \) be intuitionistic fuzzy sets in \(X \). Then
1. \(A \subseteq B \iff \mu_a(x) \leq \mu_b(x) \) and \(\lambda_a(x) \leq \lambda_b(x) \),
2. \(A^c = \{(x, \lambda_a(x), \mu_a(x)) : x \in X\} \),
3. \(A \cap B = \{(x, \min\{\mu_a(x), \mu_b(x)\}, \max\{\lambda_a(x), \lambda_b(x)\}) : x \in X\} \),
4. \(A \cup B = \{(x, \max\{\mu_a(x), \mu_b(x)\}, \min\{\lambda_a(x), \lambda_b(x)\}) : x \in X\} \),
5. \(\square A = \{(x, \mu_a(x), \mu_a(x)) : x \in X\} \),
6. \(\Diamond A = \{(x, \lambda_a(x), \lambda_a(x)) : x \in X\} \).

Definition 1.5 [13] Let \(G \) be a non-empty set and \(\ast : G \times G \to \wp^*(G) \) be a hyperoperation, where \(\wp^*(G) \) is the set of all the non-empty subsets of \(G \). Where \(A \ast B = \bigcup_{a \in A, b \in B} a \ast b, \forall A, B \subseteq G \).

The \(\ast \) is called weak commutative if \(x \ast y \cap y \ast x \neq \emptyset, \forall x, y \in G \).

The \(\ast \) is called weak associative if \((x \ast y) \ast z \cap x \ast (y \ast z) \neq \emptyset, \forall x, y, z \in G \).

A hyperstructure \((G, \ast) \) is called an \(H_{\ast} \)-group if
1. \(\ast \) is weak associative,
2. \(a \ast G = G \ast a = G, \forall a \in G \) (Reproduction axiom).

Definition 1.6 [14] Let \(G \) be a hypergroup (or \(H_{\ast} \)-group) and let \(\mu \) be a fuzzy subset of \(G \). Then \(\mu \) is said to be a fuzzy subhypergroup (or fuzzy \(H_{\ast} \)-subgroup) of \(G \) if the following axioms hold:
1. \(\min\{\mu(x), \mu(y)\} \leq \inf\{\mu(z) : z \in x + y\} \forall x, y \in R \),
2. \(\forall x, y \in G \) such that \(x \in a \ast y \) and \(\min\{\mu(a), \mu(x)\} \leq \{\mu(y)\} \).

Definition 1.7 [15] Let \(G \) be a hypergroup (or \(H_{\ast} \)-group). An intuitionistic fuzzy set \(A = \{\mu_a, \lambda_a\} \) of \(G \) is called intuitionistic fuzzy subhypergroup (or intuitionistic fuzzy \(H_{\ast} \)-subgroup) of \(G \) if the following axioms hold:
1. \(\min\{\mu_a(x), \mu_a(y)\} \leq \inf\{\mu_a(\alpha)\}, \forall x, y \in G \),
2. For all \(x, a \in G \) there exists \(y \in G \) such that \(x \in a \ast y \) and \(\min\{\mu(a), \mu(x)\} \leq \{\mu(y)\} \).

Definition 1.8 [13] An \(H_{\ast} \)-ring is a system \((R, +, \cdot) \) with two hyperoperations satisfying the ring-like axioms:
1. \((R, +)\) is an \(H_{\ast} \)-group, that is, \((x + y) + z = (x + (y + z)) \neq \emptyset \forall x, y \in R, a + R = R + a = R \forall a \in R;
2. \((R, \cdot)\) is an \(H_{\ast} \)-semigroup;
3. \((\cdot)\) is weak distributive with respect to \((+)\), that is, for all \(x, y, z \in R \),
\[(x \cdot (y + z)) \cap (x \cdot y + x \cdot z) \neq \emptyset, \]
\[(x + y) \cdot z \cap (x + y + z) \neq \emptyset.
\]

Definition 1.9 [16] Let \(R \) be an \(H_{\ast} \)-ring. A nonempty subset \(I \) of \(R \) is called a left (resp., right) \(H_{\ast} \)-ideal if the following axioms hold:
1. \((I, +)\) is an \(H_{\ast} \)-subgroup of \((R, +)\),
2. \(R \cdot I \subseteq I \) (resp., \(I \cdot R \subseteq I \)).

Definition 1.10 [16] Let \((R, +, \cdot) \) be an \(H_{\ast} \)-ring and \(\mu \) a fuzzy subset of \(R \). Then \(\mu \) is said to be a left (resp., right) fuzzy \(H_{\ast} \)-ideal of \(R \) if the following axioms hold:
1. \(\min\{\mu(x), \mu(y)\} \leq \inf\{\mu(z) : z \in x + y\} \forall x, y \in R \),
(2) For all \(x, a \in R \) there exists \(y \in R \) such that
\[
x + a \leq y + a \quad \text{and} \quad \min\{\mu(a), \mu(x)\} \leq \mu(y),
\]
(3) For all \(x, a \in R \) there exists \(z \in R \) such that
\[
x + z \leq a \quad \text{and} \quad \min\{\mu(a), \mu(x)\} \leq \mu(z),
\]
(4) \(\mu(y) \leq \inf\{\mu(z) : z \in x \cdot y\} \) [respectively
\(\mu(x) \leq \inf\{\mu(z) : z \in x \cdot y\} \) \(\forall x, y \in R \).

Definition 1.11 [16] An intuitionistic fuzzy set \(A = \{\mu_a, \lambda_a\} \) in \(R \) is called a left (resp., right)
intuitionistic fuzzy \(H_t \)-ideal of \(R \) if
(1) \(\min\{\mu_a(x), \mu_a(y)\} \leq \inf\{\mu_a(z) : z \in x + y\} \)
\[
\max\{\lambda_a(x), \lambda_a(y)\} \geq \sup\{\lambda_a(z) : z \in x + y\}
\]
\(\forall x, y \in R; \)
(2) For all \(x, a \in R \) there exists \(y \in R \) such that
\[
x + a \leq y \quad \text{and} \quad \min\{\mu_a(a), \mu_a(x)\} \leq \mu_a(y)
\]
and
\[
\max\{\lambda_a(a), \lambda_a(x)\} \geq \lambda_a(y);
\]
(3) For all \(x, a \in R \) there exists \(z \in R \) such that
\[
x + z \leq a \quad \text{and} \quad \min\{\mu_a(a), \mu_a(x)\} \leq \mu_a(z)
\]
and
\[
\max\{\lambda_a(a), \lambda_a(x)\} \geq \lambda_a(z);
\]
(4) \(\mu_a(y) \leq \inf\{\mu_a(z) : z \in x \cdot y\} \) [respectively
\(\mu_a(x) \leq \inf\{\mu_a(z) : z \in x \cdot y\} \) \(\forall x, y \in R \) and
\[
\lambda_a(y) \geq \sup\{\lambda_a(z) : z \in x \cdot y\}
\]
\(\lambda_a(x) \geq \sup\{\lambda_a(z) : z \in x \cdot y\} \) \(\forall x, y \in R \).

Definition 1.12 [17] By a \(t \)-norm \(T \), we mean a function
\(T : [0,1] \times [0,1] \rightarrow [0,1] \) satisfying the following conditions:
(i) \(T(x,1) = x \),
(ii) \(T(x,y) \leq T(x,z) \) if \(y \leq z \),
(iii) \(T(x,y) = T(y,x) \),
(iv) \(T(T(x,y),z) = T(x,T(y,z)) \).
For all \(x, y, z \in [0,1] \).

Definition 1.13 [17] By a \(s \)-norm \(S \), we mean a function
\(S : [0,1] \times [0,1] \rightarrow [0,1] \) satisfying the following conditions:
(i) \(S(x,0) = x \),
(ii) \(S(x,y) \leq S(x,z) \) if \(y \leq z \),
(iii) \(S(x,y) = S(y,x) \),
(iv) \(S(x,S(y,z)) = S(S(x,y),z) \).
For all \(x, y, z \in [0,1] \).
It is clear that
\(T(\alpha, \beta) \leq \min\{\alpha, \beta\} \leq \max\{\alpha, \beta\} \leq S(\alpha, \beta) \). For all
\(\alpha, \beta \in [0,1] \).
By an interval number \(\tilde{a} \) we mean an interval \([a^-, a^+] \)
where \(0 \leq a^- \leq a^+ \leq 1 \). The set of all interval numbers is denoted by \(D[0,1] \). We also identify the interval
\([a, a] \) by the number \(a \in [0,1] \).
For the interval numbers \(\tilde{a}_i = [a^-_i, a^+_i] \in D[0,1] \), \(i \in I \),
we define
\[
\max\{\tilde{a}_i, \tilde{b}_i\} = \left[\max\{a^-_i, b^-_i\}, \max\{a^+_i, b^+_i\}\right],
\]
\[
\min\{\tilde{a}_i, \tilde{b}_i\} = \left[\min\{a^-_i, b^-_i\}, \min\{a^+_i, b^+_i\}\right],
\]
\[
\inf\tilde{a}_i = \left[\bigwedge_{i \in I} a^-_i, \bigwedge_{i \in I} a^+_i\right],
\]
\[
\sup\tilde{a}_i = \left[\bigvee_{i \in I} a^-_i, \bigvee_{i \in I} a^+_i\right],
\]
and put
\((1) \tilde{a}_1 \leq \tilde{a}_2 \iff a^-_1 \leq a^-_2 \) and \(a^+_1 \leq a^+_2 \),
\((2) \tilde{a}_1 = \tilde{a}_2 \iff a^-_1 = a^-_1 \) and \(a^+_1 = a^+_2 \),
\((3) \tilde{a}_1 < \tilde{a}_2 \iff \tilde{a}_1 \leq \tilde{a}_2 \) and \(\tilde{a}_1 \neq \tilde{a}_2 \),
\((4) k\tilde{a} = \left[ka^-, ka^+\right], \) whenever \(0 \leq k \leq 1 \).
It is clear that \((D[0,1],\leq, \lor, \land) \) is a complete lattice
with \(0 = [0,0] \) as least element and \(1 = [1,1] \) as greatest
element.
By an interval valued fuzzy set \(F \) on \(X \) we mean the set
\(F = \left\{\left(x, [\mu^-_F(x), \mu^+_F(x)]\right) : x \in X\right\} \). Where \(\mu^-_F \) and
\(\mu^+_F \) are fuzzy subsets of \(X \) such that
\(\mu^-_F(x) \leq \mu^+_F(x) \) for all \(x \in X \). Put \(\tilde{\mu}_F(x) = \left[\mu^-_F(x), \mu^+_F(x)\right]. \) Then
\(F = \left\{\left(x, \tilde{\mu}_F(x)\right) : x \in X\right\}. \) where \(\tilde{\mu}_F : X \rightarrow D[0,1] \).
If \(A, B \) are two interval valued fuzzy subsets of \(X \), then
we define
\(A \subseteq B \) if and only if for all \(x \in X \), \(\mu^-_A(x) \leq \mu^-_B(x) \) and \(\mu^+_A(x) \leq \mu^+_B(x) \),
\(A = B \) if and only if for all \(x \in X \), \(\mu^-_A(x) = \mu^-_B(x) \) and \(\mu^+_A(x) = \mu^+_B(x) \).
Also, the union, intersection and complement are defined as follows: let A; B be two interval valued fuzzy subsets of X, then

\[A \cup B = \left\{ x \in X : \max \{ \mu_A(x), \mu_B(x) \}, \max \{ \mu_A(x), \mu_B(x) \} : x \in X \right\}, \]

\[A \cap B = \left\{ x \in X : \min \{ \mu_A(x), \mu_B(x) \}, \min \{ \mu_A(x), \mu_B(x) \} : x \in X \right\}, \]

\[A' = \left\{ x \in X : 1 - \mu_A(x), 1 - \mu_A(x) : x \in X \right\}. \]

According to Atanassov an interval valued intuitionistic fuzzy set on X is defined as an object of the form

\[A = \left\{ x, \tilde{\mu}_A(x), \tilde{\lambda}_A(x) : x \in X \right\}, \]

where \(\tilde{\mu}_A(x) \) and \(\tilde{\lambda}_A(x) \) are interval valued fuzzy sets on X such that

\[0 \leq \sup \tilde{\mu}_A(x) + \sup \tilde{\lambda}_A(x) \leq 1 \text{ for all } x \in X. \]

For the sake of simplicity, in the following such interval valued intuitionistic fuzzy sets will be denoted by \(A = (\tilde{\mu}_A, \tilde{\lambda}_A) \).

2. Interval Valued Intuitionistic \((S,T)\)-Fuzzy \(H_v\)-Ideals

In what follows, let R denote an \(H_v \)-ring unless otherwise specified.

Definition 2.1 An interval valued intuitionistic fuzzy set \(A = (\tilde{\mu}_A, \tilde{\lambda}_A) \) of R is called an interval valued intuitionistic \((S,T)\)-fuzzy \(H_v\)-ideal of R if the following conditions hold:

1. \(T(\tilde{\mu}_A(x), \tilde{\mu}_A(y)) \leq \inf_{\alpha \in [s,t]} \tilde{\mu}_A(\alpha) \) and
2. \(S(\tilde{\lambda}_A(x), \tilde{\lambda}_A(y)) \geq \sup_{\alpha \in [s,t]} \tilde{\lambda}_A(\alpha), \forall x, y \in R, \)
3. \(\forall x, a \in R \text{ there exists } y \in R \text{ such that } x \in a + y \text{ and } T(\tilde{\mu}_A(x), \tilde{\mu}_A(a)) \leq \tilde{\mu}_A(y) \) and
4. \(S(\tilde{\lambda}_A(x), \tilde{\lambda}_A(a)) \geq \tilde{\lambda}_A(y), \)
5. \(\forall x, a \in R \text{ there exists } z \in R \text{ such that } x \in z + a \text{ and } T(\tilde{\mu}_A(x), \tilde{\mu}_A(a)) \leq \tilde{\mu}_A(z) \) and
6. \(S(\tilde{\lambda}_A(x), \tilde{\lambda}_A(a)) \geq \tilde{\lambda}_A(z), \)

With any interval valued intuitionistic fuzzy set \(A = (\tilde{\mu}_A, \tilde{\lambda}_A) \) of R there are connected two levels:

\[U(\tilde{\mu}_A;[t,s]) = \{ x \in R : \tilde{\mu}_A(x) \geq [t,s] \}, \]

\[L(\tilde{\lambda}_A;[t,s]) = \{ x \in R : \tilde{\lambda}_A(x) \leq [t,s] \}. \]

Theorem 2.2 Let T (resp. S) be an idempotent interval t-norm (resp. s-norm). Then \(A = (\tilde{\mu}_A, \tilde{\lambda}_A) \) is an interval valued intuitionistic \((S,T)\)-fuzzy \(H_v\)-ideal of R and only if for all \(t, s \in [0,1], t \leq s, U(\tilde{\mu}_A;[t,s]) \) and \(L(\tilde{\lambda}_A;[t,s]) \) are \(H_v\)-ideals of R.

Proof Let \(A = (\tilde{\mu}_A, \tilde{\lambda}_A) \) be an interval valued intuitionistic \((S,T)\)-fuzzy \(H_v\)-ideal of R. Then for every \(x, y \in U(\tilde{\mu}_A;[t,s]) \) we have \(\tilde{\mu}_A(x) \geq [t,s] \) and \(\tilde{\mu}_A(y) \geq [t,s] \). Hence

\[T(\tilde{\mu}_A(x), \tilde{\mu}_A(y)) \geq T([t,s],[t,s]) = [t,s], \]

so \(\inf_{\alpha \in [s,t]} \tilde{\mu}_A(\alpha) \geq [t,s] \). Therefore \(\alpha \in U(\tilde{\mu}_A;[t,s]) \) for every \(\alpha \in x + y \), so \(x + y \subseteq U(\tilde{\mu}_A;[t,s]) \). Thus, for every \(a \in U(\tilde{\mu}_A;[t,s]) \), we have

\[a + U(\tilde{\mu}_A;[t,s]) \subseteq U(\tilde{\mu}_A;[t,s]). \]

On the other hand, for \(x, a \in U(\tilde{\mu}_A;[t,s]) \) there exists \(y \in R \) such that \(x \in a + y \) and \(T(\tilde{\mu}_A(x), \tilde{\mu}_A(a)) \leq \tilde{\mu}_A(y) \) and \(T(\tilde{\mu}_A(x), \tilde{\mu}_A(a)) \geq \tilde{\mu}_A(y) \). But \(T(\tilde{\mu}_A(x), \tilde{\mu}_A(a)) \leq T([t,s],[t,s]) = [t,s] \), so \(\tilde{\mu}_A(y) \geq [t,s] \) that is, \(y \in U(\tilde{\mu}_A;[t,s]) \), whence \(U(\tilde{\mu}_A;[t,s]) \subseteq a + U(\tilde{\mu}_A;[t,s]) \), and, in consequence, \(U(\tilde{\mu}_A;[t,s]) = a + U(\tilde{\mu}_A;[t,s]) \). Similarly, we can prove that \(a + U(\tilde{\mu}_A;[t,s]) = U(\tilde{\mu}_A;[t,s]) + a \). That is, \(a + U(\tilde{\mu}_A;[t,s]) = U(\tilde{\mu}_A;[t,s]) = U(\tilde{\mu}_A;[t,s]) + a \).

This proves that \(U(\tilde{\mu}_A;[t,s]) \) is an \(H_v\)-subgroup of \((R,+)\).

If \(r \in R \) and \(x \in U(\tilde{\mu}_A;[t,s]) \) then \(\tilde{\mu}_A(x) \geq [t,s] \), which means that \(\inf_{\alpha \in [s,t]} \tilde{\mu}_A(\alpha) \geq [t,s] \).

So, \(\alpha \in U(\tilde{\mu}_A;[t,s]) \) for every \(\alpha \in r \cdot x \). Therefore,
\[r \cdot x \subseteq U(\tilde{\mu}_A;[t,s]), \text{ i.e.} \]
\[r \cdot U(\tilde{\mu}_A;[t,s]) \subseteq U(\tilde{\mu}_A;[t,s]). \]
This proves that \(U(\tilde{\mu}_A;[t,s]) \) is an \(H_v \)-ideal of \(R \). Similarly, we can show that \(L(\tilde{\lambda}_A;[t,s]) \) is an \(H_v \)-ideal of \(R \).

Conversely, assume that for every \([t,s] \in D[0,1]\) any non-empty \(U(\tilde{\mu}_A;[t,s]) \) is an \(H_v \)-ideal of \(R \). If \([t_0, s_0] = T(\tilde{\mu}_A(x), \tilde{\mu}_A(y)) \) for some \(x, y \in R \), then \(x, y \in U(\tilde{\mu}_A;[t_0, s_0]) \), and so \(x + y \subseteq U(\tilde{\mu}_A;[t_0, s_0]) \).

Therefore \(\inf_{\alpha \in U(\tilde{\mu}_A;[t_0, s_0])} \tilde{\mu}_A(\alpha) \geq T(\tilde{\mu}_A(x), \tilde{\mu}_A(y)) \). Now, if \([t_1, s_1] = T(\tilde{\mu}_A(a), \tilde{\mu}_A(x)) \) for some \(a, x \in R \), then \(a + x \in U(\tilde{\mu}_A;[t_1, s_1]) \), so there exists \(y \in U(\tilde{\mu}_A;[t_1, s_1]) \) such that \(x \in a + y \). But for \(y \in U(\tilde{\mu}_A;[t_1, s_1]) \) we have \(\tilde{\mu}_A(y) \geq [t_1, s_1] \), whence \(\tilde{\mu}_A(y) \geq T(\tilde{\mu}_A(a), \tilde{\mu}_A(x)) \).

Similarly, we can show that for \(a, x \in R \), there exists \(z \in R \) such that \(x \in z + a \) and \(\tilde{\mu}_A(z) \geq T(\tilde{\mu}_A(a), \tilde{\mu}_A(x)) \). If \([t_2, s_2] = \tilde{\mu}_A(x) \) for some \(x \in R \), then \(x \in U(\tilde{\mu}_A;[t_2, s_2]) \), and so \(r \cdot x \subseteq U(\tilde{\mu}_A;[t_2, s_2]) \) for every \(r \in R \). Therefore for every \(\alpha \in r \cdot x \), we have \(\alpha \in U(\tilde{\mu}_A;[t_2, s_2]) \), consequently \(\inf_{\alpha \in r \cdot x} \tilde{\mu}_A(\alpha) \geq [t_2, s_2] = \tilde{\mu}_A(x) \).

This proves that \(\tilde{\mu}_A \) is an interval valued \(T \)-fuzzy \(H_v \)-ideal of \(R \).

Similarly, we can show that \(\tilde{\lambda}_A \) is an interval valued \(S \)-fuzzy \(H_v \)-ideal of \(R \). Therefore, \(A = (\tilde{\mu}_A, \tilde{\lambda}_A) \) is an interval valued intuitionistic \((S,T) \)-fuzzy \(H_v \)-ideal of \(R \).

Definition 2.3 Let \(f : X \rightarrow Y \) be a mapping and \(A = (\tilde{\mu}_A, \tilde{\lambda}_A), B = (\tilde{\mu}_B, \tilde{\lambda}_B) \) an interval valued intuitionistic sets \(X \) and \(Y \), respectively. Then the image \(f[A] = (f(\tilde{\mu}_A), f(\tilde{\lambda}_A)) \) of \(A \) is the interval valued intuitionistic fuzzy set of \(Y \) defined by

\[f(\tilde{\mu}_A)(y) = \left\{ \begin{array}{ll}
sup_{z \in f^{-1}(y)} \tilde{\mu}_A(z), & f^{-1}(y) \neq \phi \\
[0,0], & f^{-1}(y) = \phi
\end{array} \right. \]

and

\[f(\tilde{\lambda}_A)(y) = \left\{ \begin{array}{ll}
inf_{z \in f^{-1}(y)} \tilde{\lambda}_A(z), & f^{-1}(y) \neq \phi \\
[1,1], & f^{-1}(y) = \phi
\end{array} \right. \]

for all \(y \in Y \).

The inverse image \(f^{-1}(B) \) of \(B \) is an interval valued intuitionistic fuzzy set defined by \(f^{-1}(\tilde{\mu}_B)(x) = \tilde{\mu}_{f^{-1}(b)}(x) = \tilde{\mu}_B(f(x)), \)

\(f^{-1}(\tilde{\lambda}_B)(x) = \tilde{\lambda}_{f^{-1}(b)}(x) = \tilde{\lambda}_B(f(x)) \) for all \(x \in X \).

Definition 2.4 [18] Let \(R \) and \(S \) be two \(H_v \)-rings. A mapping \(f : R \rightarrow S \) is called an \(H_v \)-homomorphism or weak homomorphism if for all \(x, y, r \in R \) the following relations hold: \(f(x + y) \cap (f(x) + f(y)) \neq \phi \) and \(f(r \cdot x) \cap r \cdot f(x) \neq \phi \).

\(f \) is called an inclusion homomorphism if \(f(x + y) \subseteq f(x) + f(y) \) and \(f(r \cdot x) \subseteq r \cdot f(x) \) for all \(x, y, r \in R \). Finally, \(f \) is called a strong homomorphism if for all \(x, y, r \in R \) we have \(f(x + y) = f(x) + f(y) \) and \(f(r \cdot x) = r \cdot f(x) \).

Lemma 2.5 [18] Let \(R_1 \) and \(R_2 \) be two \(H_v \)-rings and \(f : R_1 \rightarrow R_2 \) a strong epimorphism. If \(S \) is an \(H_v \)-ideal of \(R_2 \), then \(f^{-1}(S) \) is an \(H_v \)-ideal of \(R_1 \).

Theorem 2.6 Let \(R_1 \) and \(R_2 \) be two \(H_v \)-rings, \(f \) a strong epimorphism from \(R_1 \) into \(R_2 \) and \(T \) (resp. \(S \)) an idempotent interval t-norm (resp. s-norm).

(i) If \(A = (\tilde{\mu}_A, \tilde{\lambda}_A) \) is an interval valued intuitionistic \((S,T) \)-fuzzy \(H_v \)-ideal of \(R_1 \), then the image \(f[A] \) of \(A \) is an interval valued intuitionistic \((S,T) \)-fuzzy \(H_v \)-ideal of \(R_2 \).

(ii) If \(B = (\tilde{\mu}_B, \tilde{\lambda}_B) \) is an interval valued intuitionistic \((S,T) \)-fuzzy \(H_v \)-ideal of \(R_2 \), then the inverse image...
$f^{-1}(B)$ of B is an interval valued intuitionistic (S,T)-fuzzy H_v-ideal of R_i.

Proof (i) Let $A = (\bar{\mu}_A, \bar{\lambda}_A)$ be an interval valued intuitionistic (S,T)-fuzzy H_v-ideal of R_i. By

Theorem 2.2, $U(\bar{\mu}_A;[t,s])$ and $L(\bar{\lambda}_A;[t,s])$ are H_v-ideals of R_i for every $[t,s] \in D[0,1]$. Therefore, by Lemma 3.5, $f(U(\bar{\mu}_A;[t,s]))$ and $f(L(\bar{\lambda}_A;[t,s]))$ are H_v-ideals of R_2. But

$U(f(\bar{\mu}_A);[t,s]) = f(U(\bar{\mu}_A;[t,s]))$ and

$L(f(\bar{\lambda}_A);[t,s]) = f(L(\bar{\lambda}_A;[t,s]))$, so

$U(f(\bar{\mu}_A);[t,s])$ and $L(f(\bar{\lambda}_A);[t,s])$ are H_v-ideals of R_2. Therefore $f[A]$ is an interval valued intuitionistic (S,T)-fuzzy H_v-ideal of R_2.

(ii) For any $x, y \in R$ and $\alpha \in x + y$, we have

$\beta_{f^{-1}(B)}(\alpha) = \bar{\mu}_B(f(\alpha)) \geq T(\bar{\mu}_B(f(x)), \bar{\mu}_B(f(y))) = T(\bar{\mu}_{f^{-1}(B)}(x), \bar{\mu}_{f^{-1}(B)}(y))$.

Therefore

$\inf_{\alpha x y} \bar{\mu}_{f^{-1}(B)}(\alpha) \geq T(\bar{\mu}_{f^{-1}(B)}(x), \bar{\mu}_{f^{-1}(B)}(y))$. For

$x, a \in R_2$, there exists $y \in R_2$ such that $x = a + y$.

Thus $f(x) \in f(a) + f(y)$ and

$T(\bar{\mu}_{f^{-1}(B)}(x), \bar{\mu}_{f^{-1}(B)}(y)) = T(\bar{\mu}_B(f(x)), \bar{\mu}_B(f(y))) \leq \bar{\mu}_B(f(x)) = \bar{\mu}_{f^{-1}(B)}(y)$.

In the same manner, we can show that for $x, a \in R_2$

there exists $z \in R_2$ such that $x = z + a$ and

$T(\bar{\mu}_{f^{-1}(B)}(x), \bar{\mu}_{f^{-1}(B)}(a)) \leq \bar{\mu}_{f^{-1}(B)}(z)$.

It is not difficult to see that, for all $x \in R_2, r \in R$ and $\alpha \in r \cdot x$, we have

$\bar{\mu}_{f^{-1}(B)}(\alpha) = \bar{\mu}_B(f(\alpha)) \geq \bar{\mu}_B(f(x)) = \bar{\mu}_{f^{-1}(B)}(x)$,

whence $\inf_{\alpha \in f^{-1}(B)} \bar{\mu}_{f^{-1}(B)}(\alpha) \geq \bar{\mu}_{f^{-1}(B)}(x)$.

This completes the proof that $\bar{\mu}_{f^{-1}(B)}$ is an interval valued T-ideal of R_i.

Similarly, we can prove $\bar{\lambda}_{f^{-1}(B)}$ is an interval valued S-fuzzy H_v-ideal of R_i. Therefore $f^{-1}(B)$ is an interval valued intuitionistic (S,T)-fuzzy H_v-ideal of R_i.

III. REFERENCES

