
IJSRSET162366 | Received : 15 May 2016 | Accepted : 20 May 2016 | May-June 2016 [(2)3: 230-238]

© 2016 IJSRSET | Volume 2 | Issue 3 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

230

Closed Frequent Pattern Mining Using Vertical Data Format:

Depth First Approach
Md. Mohsin*1, Md. Rayhan Ahmed2, Tanveer Ahmed3

1
Department of CSE, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

2,3
Department of CSE, Stamford University Bangladesh, Dhaka, Bangladesh

ABSTRACT

Frequent pattern finding plays an essential role in mining associations, correlations and many more interesting

relationships among data. Discovery of such correlations among huge amount of business transaction records can

help in many aspects of business-related decision-making processes like catalog design, cross-marketing and

customer shopping behavior analysis. ―Market Basket Analysis‖ is one of such applications. It involves analysis of

customer buying patterns by finding associations between the different items that customers place in their shopping

carts. The discovery of such associations can help retailers and analysts to develop marketing strategies by gaining

insight into which items are frequently purchased together by customers leading to increased sales by helping

retailers do selective marketing and design efficient store layout.

Keywords: Frequent Pattern Finding, Association Rules, Vertical Data Format, Closed Frequent Itemsets.

I. INTRODUCTION

The phrase ―Frequent Pattern‖ means itemsets,

subsequence or substructures that appear in a data set

frequently [1]. For example, a set of items, such as tea

and biscuit that appear in transaction records or

customer invoices frequently and therefore it is a

frequent item set. Example of a subsequence is buying

first a Laptop, then a modem and then a portable speaker

if it occurs frequently in a shopping database.

Another two important terms in frequent itemset mining

are closed and maximal frequent pattern. An itemset is

closed frequent itemset in a data set which is frequent

and has no proper super-itemset having same support

count. An itemset is maximal in a data set if it is

frequent and there is no super itemset of which this

itemset can be a subset [2]. For example, if there are two

transactions: {a,b,c,d,e} and {b,c,d} and minimum

support threshold is set to 1, then the set of closed

frequent itemset is: C = {{a,b,c,d,e}:1}; {{b,c,d}:2} and

the set of maximal frequent itemset is: M =

{{a,b,c,d,e}:1}(we cannot include {b,c,d} as maximal

frequent itemset because there exists a frequent superset

{a,b,c,d,e}). The set of closed frequent itemsets contains

complete information of frequent itemsets. However,

with the maximal frequent itemset, we can only assert

two itemsets are frequent but cannot assert their actual

support count.

There has been extensive research in the field of mining

frequent patterns. Apriori algorithm is probably the first

algorithm proposed by R. Agrawal and R. Srikant [3]

who introduced an anti-monotone property called

Apriori property and a level-wise approach of generating

frequent patterns having two major steps called join step

and prune step. But this algorithm requires multiple scan

of the transaction database each time the join step is

performed and for a large database, complexity of this

step is huge. To minimize database scan, vertical data

format was introduced which scans the database once

and stores the transaction information item-wise so that

no further database scan is needed all information can be

obtained from that table. This is certainly a great

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

231

improvement to minimize database scan and can be used

in further study.

This paper concentrates on two major aspects:

 Find all frequent itemsets: By definition, each

of these itemsets will occur at least as frequently

as a predetermined minimum support count,

min_sup.

 Generate strong association rules from

frequent itemsets: By definition, these rules must

satisfy minimum support (min_sup) and minimum

confidence (min_conf).

Out of these two steps, the second step is much less

costly then the first, so the overall performance is

determined by the first step. The first step involves a

major challenge of minimizing the generation of a huge

number of itemsets if min_sup is set low. Because a

frequent itemset guarantees each of its subsets to be

frequent, so a long itemset will contain a combinatorial

number of shorter, frequent sub-itemsets. For example, a

frequent itemset of length 100, such as {a1, a2… a100}

contains = 100 frequent 1-itemsets: a1, a2… a100, =

4950 frequent 2-itemsets: (a1, a2), (a1, a3) … (a99, a100)

and so on. So total number of frequent itemsets that it

contains is:

(

) (

) (

) (

)

This is too huge a number of itemsets for any computer

to compute or store. To overcome, the concepts of

closed and maximal frequent itemsets are introduced.

II. METHODS AND MATERIAL

Literature Review

In this paper we are concentrating on the three major

scalable mining methods mentioned as below:

 Apriori (Agrawal & Srikant@VLDB‘94)

 Frequent pattern growth (FPgrowth—Han,

Pei & Yin @SIGMOD‘00)

 Vertical data format approach (Charm—

Zaki& Hsiao @SDM‘02)

Scalable mining methods are based on the Downward

Closure Property of frequent patterns. That is: “Any

subset of a frequent itemset must be frequent”.

For example, if the itemset {milk, bread, butter} is

frequent then any subset of it like {bread, butter} or

{milk, butter} is also frequent.

A. Apriori (Candidate Generation-and-Test

Approach)

Apriori is the basic algorithm for finding frequent

itemsets for Boolean association rules proposed by R.

Agrawal and R. Srikant in 1994. It employs an iterative

level-wise search and hash tree structure where k-

itemsets are used to explore (k+1)-itemsets. They

presented a property to reduce search space known as

Apriori Property:

“All non-empty subsets of a frequent itemset must also

be frequent”

It is based on the following observation that if an itemset

I does not satisfy min_sup, then I is non-frequent. If an

item A is added to the itemset I, then the resulting

itemset cannot occur more frequently than I. Therefore,

I∪A is not frequent either.

This property belongs to a special class of properties

called anti-monotone which claims that if a set cannot

pass a test, all of its supersets will fail the same test as

well.

The Apriori is known as Candidate Generation and Test

algorithm consisting of Join and Prune step. In the join

step, the set of candidate k-itemsets Lk is generated by

joining Lk-1 with itself. This joining assumes that items

within a transaction or itemset are sorted in

lexicographic order. In the prune step, a database scan is

performed to find the candidates satisfying minimum

support threshold and prune the rest. But the number of

candidates can be huge therefore to reduce the size of

candidates, Apriori property is applied. The subset

testing to implement Apriori property can be done

quickly by maintaining a hash tree of all frequent

itemsets.

The main advantages of apriori algorithm are as follows:

 Uses large itemset property

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

232

 Easily parallelized

 Easy to implement

The disadvantages of Apriori Algorithm can be

mentioned as like,

 Assumes transaction database is memory

resident

 Requires many database scans

 Huge number of candidates

 Tedious workload of support counting for

candidates

1) Bottleneck of Frequent-pattern Mining

In Apriori, multiple database scan is incurred which is

costly. Mining long patterns needs many passes of

scanning and thus generates lots of candidates. To find

frequent itemset i1, i2… i100.

Number of scans: 100

Number of Candidates:

(

) (

) (

) (

)

This is unpleasantly too huge a number of itemsets for

any computer to compute or store.

2) General ideas for improving efficiency of

Apriori:

a) Transaction reduction: A transaction that does

not contain any frequent k-itemset is useless in

subsequent scans.

b) Partitioning: Any itemset that is potentially

frequent in database must be frequent in at least

one of the partitions of database [4].

c) Hash-based itemset counting: A k-itemset

whose corresponding hashing bucket count is

below the threshold cannot be frequent [5].

d) Sampling: Mining on a subset of given data,

lower support threshold along with a method to

determine the completeness.

e) Dynamic itemset counting: Add new candidate

itemsets only when all of their subsets are

estimated to be frequent.

f) Avoid candidate generation: Grow long patterns

from short ones using local frequent items.

B. Mining Frequent Patterns using FP-Growth

Approach

FP Growth is rather a different approach which mines

frequent itemsets without candidate generation. It

recursively grows frequent patterns by pattern and

database partition. It is based on a prefix tree

representation of the given database of transactions

(called an FP-tree) [6], which can save considerable

amounts of memory for storing the transactions. The

basic idea of the FP-growth algorithm is known as

Recursive Elimination Scheme inside of which a pre-

processing step delete all items from the transactions

that are not frequent individually and then select all

transactions that contain the least frequent item and

delete that item. It transforms the problem of finding

long frequent patterns to search for shorter ones

recursively and then concatenating the suffix. It uses the

least frequent items as a suffix offering good selectivity

resulting a substantially reduced search cost.

This method is capable of mining frequent patterns or

frequent sequential patterns or frequent structural

patterns without candidate generation which is a great

improvement over Apriori algorithm.

Now it is time to discuss how FP-Growth algorithm

achieved this improvement. It is actually done by using

Tree Projection (described by Agarwal et al. (2001))

which:

 creates a lexicographical tree

 projects database into sub-databases based on

the patterns mined so far

 recursively mines sub-databases

1) Simulation of FP-Growth Algorithm:

FP-Tree construction FP-tree constructed for the above

transaction database and conditional pattern base of each

item is given below:

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

233

Figure 1. Construction ofFP-tree and Conditional Pattern

Base of each item

For a large database, constructing a main-memory based

FP-tree is undesirable. To overcome, first partition the

database into a set of projected databases and then

construct FP-tree and mine each projected database. A

comparative study results that FP-Growth is efficient

and scalable for mining both long and short frequent

patterns and about an order of magnitude faster than

Apriori algorithm and also faster than Tree-Projection

algorithm.

C. Mining Frequent Pattern using Vertical Data

Format

Both Apriori and FP-growth mine frequent patterns from

transactional database in {TID:itemset} form known as

Horizontal Data Format. Alternatively, data can be

stored in the form {item:TID_set} where item is an item

name and TID_set is the set of transactions containing

that item and this form is known as Vertical Data Format.

An algorithm known as ECLAT (Equivalence CLASS

Transformation) was developed by Zaki [7] that

implemented this vertical format data structure to store

the transactional database.

Vertical Data Format brings a modification in the data

structure by storing information in item wise fashion

rather transaction-wise manner as stored in earlier

algorithms. This change results only single database

scan transforming into vertical format. Then it applies

the Apriori property to generate (k+1)-itemsets from k-

itemsets by intersecting the set of transaction IDs and

unlike Apriori, this step requires no database scan

because vertical data format stores complete information

required for counting support.

Table 1 : A Transaction Database of a Retail Shop

TID List of

item_IDs

T100 I1,I2,I5

T200 I2,I4

T300 I2,I3

T400 I1,I2,I4

T500 I1,I3

T600 I2,I3

T700 I1,I3

T800 I1,I2,I3,I5

T900 I1,I2,I3

Initial step is to scan the transactional database and

construct vertical data format table like as given below

for the transactional database of Table-2:

Table 2: Vertical data format for transaction dataset of

Table 1

itemset TID_set

I1 {T100,T400,T500,T700,T800,T900}

I2 {T100,T200,T300,T400,T600,T800,T900}

I3 {T300,T400,T600,T700,T800,T900}

I4 {T200,T400}

I5 {T100,T800}

Now it approaches the candidate generation and test

approach like Apriori and generates 2- itemsets and 3-

itemsets as given below:

Table 3: Frequent 2 and 3 itemsets generation in vertical

data format

Frequent 2-itemsets

itemet TID_set

I1,I2 {T100,T400,T800,

T900}

I1,I3 {T500,T700,T800,

T900}

I1,I4 {T400 }

I1,I5 {T100,T800 }

I2,I3 {T300,T600,T800,

T900}

I2,I4 {T200,T400}

I2,I5 {T100,T800}

I3,I5 {T800}

 Frequent 3-itemsets

itemset TID_set

I1,I2,I3 {

T800,T90

0}

II,I2,I5 {T100,

T800}

Vertical Data Format algorithm not only takes the

benefit of Apriori property to generate candidate (k+1)-

itemsets from frequent k-itemsets, but also minimizes

number of database scan to one because like Apriori it

does not need to scan at each join step rather it retrieves

the complete information required from vertical format

table.

However, if TID_set is quite long, it takes much

computation for intersection of long sets. To resolve, a

technique called Diffset was introduced which stores

only the difference of TID_sets. For example, in the

above example, we had {I1} = {T100, T400, T500,

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

234

T700, T800, T900} and {I1, I2} = {T100, T400, T800,

T900} therefore Diffset ({I1}, {I1, I2}) = {T500, T700}.

D. Comparative discussion of Scalable Algorithms

All these three algorithms have some advantages and

flaws as well. Apriori uses an anti-monotone property to

reduce candidate generation but involves a considerable

amount of database scan which is overcome in Vertical

Data format with a slight change of data structure.

Moreover, FP Growth implements an approach without

candidate generation but for a large database, a main

memory based FP-tree is an unrealistic outcome which

can be resolved by partitioning into a set of projected

databases and then constructing FP-tree for each.

If the vertical data format can be added with a depth-first

candidate generation out of the search space, then it can

be a good variation in the evolution of mining closed

frequent patterns. The point of thought is that both

Vertical Data Format and Apriori algorithms employ

Apriori property with a kind of breadth-first traversal of

the search space which consumes a considerable

memory at initial levels. If there can be implemented

depth-first traversal with the vertical data format at the

same time, it will result the least amount of database

scan along with improved space complexity. The

motivation of the paper is to develop such an algorithm

which will be to some extent a blending of the benefits

of the existing algorithms. Moreover, it will ultimately

mine closed frequent itemsets performing additional two

types of closure checking in an optimized way thus

leading to the development of a closed frequent itemset

mining algorithm.

III. RESULTS AND DISCUSSION

1. Proposed Algorithm

In our research work we are proposing a new algorithm

named ―A Depth-first Closed Frequent Pattern &

Association Rule Mining Algorithm‖. This algorithm

will help to find closed frequent itemsets with an Item-

wise Depth-first approach using vertical data format.

A. Input

 D, a database of transactions containing m

transactions of n items;

 minsup, the minimum support count threshold

 minconf, the minimum confidence threshold

B. Output

The output of the program is a full list of closed frequent

itemset patterns. It will also output a list of association

rules of the database of transactions containing m

transactions of n items i.e. D.

C. Method

fori=1 to m do

for j=1to n do

 Scan database D once and store

transaction’s array in

verticaldataarrayvArray

fori=1 to (n-1) do

if (vArray[i].supportCount>= minsup)

while traversing tree of ith item in

Depth-first manner

if (any pattern with

supportCount<minsup is found or

a leaf node isvisited)

 Add pattern found so far longest

in this branch into pattern

 Backtrack;

Add nth item to patterns if

vArray[an].supportCount>=minsup

for each pattern S1 in patterns do

for each pattern S2 in patterns do

if((S1.itemCount < S2.itemCount)

&&existCommonItem(S1,S2)==true)do

if (S2 contains S1)

patterns.remove(S1);

break;

else if (S1 is longest common

subpattern of S2)

patterns.remove(S1);

for each pattern p in patterns do

Store each item of p in a Set S

Generate all combinations of items

inS and put them in a

list L

for each combination c in L do

Take intersection of

transaction_arrays of items of c

into lhs

Take intersection of

transaction_arrays of items of

 {S-c}intorhs

Take intersection of lhs &rhs into

result

if((Item count of (lhs &rhs)/Item

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

235

 count of rhs)>=minconf)

 AddString.format(c.toString()+" -

>"+(S-{c}).toString()) to

associationrules;

D. Simulation

Here, a simulation of the proposed algorithm on

transaction database of Table-I is given below and

thereby observe how the algorithm proceeds.

For the transaction database of Table-I with min_sup = 2,

the search space traversal of the proposed algorithm is

shown below:

Figure 2: Tree traversal of the proposed algorithm for the

transaction of Table-I

1) First of all, the transaction database is stored in

vertical data format which is performed in Line: 1-3

of algorithm:

Table 4. Item_Id and Transaction_Array in Vertical

Data Format

Item_ID Transaction Array

I1 1,0,0,1,1,0,1,1,1

I2 1,1,1,1,0,1,0,1,1

I3 0,0,1,0,1,1,1,1,1
I4 0,1,0,1,0,0,0,0,0

I5 1,0,0,0,0,0,0,1,0

2) Now the search space is traversed in Depth-First

manner in Line: 4-10 of algorithm. So, first the

branch 1>12>123>1234>12345 is visited. It will be

found that at node ‗1234‘, min_sup constraint is not

satisfied, so the longest pattern found in this branch

that is ‗123‘ is added to patterns and no more node is

visited in this branch.

In this manner, all the 11 nodes satisfying min_sup are

added to patterns list and indicated by solid line ellipse

in the tree. The dotted ellipse nodes are those patterns

which are checked and pruned without branching deeper.

3) In this step, two types of closure checking: whether

a pattern is a subset or a superset of another pattern

and if so, remove it from patterns. This closure

checking is done within line: 11-18 of the algorithm.

For example, ‗123‘ is a super-node for ‗12‘, ‗23‘ and

‗13‘. To check ‗12‘ and ‗23‘ as a subset of ‗123‘, a

slightly customized version of Java String function

containsOf() is used. Checking of ‗13‘ to be a subset

of ‗123‘ is much similar to the prominent Longest

Common Subsequence problem the solution of

which is also employed here. Thus, ‗1‘, ‗2‘, ‗3‘, ‗4‘,

‗12‘, ‗23‘ and ‗25‘ are removed using containsOf()

function as they are subsets of ‗123‘ and ‗125‘. ‗13‘

is removed using LCS () function. Finally ‗123‘,

‗125‘ and ‗24‘ are the ultimate patterns.

4) Association rule generation for each pattern is done

in this step within line: 19-27 of algorithm. For

example, consider the pattern ‗123‘. First, all the

combinations of ‗123‘ are derived which are: ‗1‘, ‗2‘,

‗3‘, ‘12‘, ‘13‘, ‘23‘, ‘123‘. Now for each

combination, we put the combination on left hand

side and the complement set on the right hand side

and then calculate the ratio of support count of right

side to support count of left side and if this ratio is

equal or greater than the min_conf percentage, then

we add this rule to associationRules as: LHS ⇒ RHS.

For the pattern ‗123‘, the following rules are

generated:

I1ΛI2 ⇒ I5, confidence = 2/4 = 50%

I1ΛI5 ⇒ I2, confidence = 2/2 = 100%

I2ΛI5 ⇒ I1, confidence = 2/2 = 100%

I1 ⇒ I2ΛI5, confidence = 2/6 = 33%

I2 ⇒ I1ΛI5, confidence = 2/7 = 29%

I5 ⇒ I1ΛI2, confidence = 2/2 = 100%

If min_conf was set to 50%, then except 4th and 5th

rules, rest will be added to the list associationRules.

2. Result Analysis

A. Complexity Calculation:

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

236

Step-1: Two nested loop scans the whole transactional

database where outer loop executes m times and inner

loop executes n times. So order is O(mn). If there are q

no of 1s in the transactional database in total, then inside

loop only q number of set operation will be executed on

the vertical format data structure where 0≤q≤mn.

Step-2: Traversing the search space in depth-first

manner yields a complexity of O(2a-1)p where a is the

average item count in each pattern and p is the number

of pattern finally obtained.

Step-3: At this step, two types of closure checking is

performed on the patterns generated at previous step. A

two-step nested loop is run inside of which three types

of filtering is done in an if-elseif-else ladder to check

whether a pattern is a superset or subset of another

pattern. If S1 and S2 be two patterns containing l1 and l2

number of items respectively, then,

1. If S1 and S2 contain no common item then don‘t

check further. It is O(min(l1, l2))

2. If S1 contains wholly inside S2 then remove S1.

3. If S1 is the longest common sub-pattern of S2

then remove S1. It is O(l1,l2))

So an upper bound (if case-3 is invoked for each of

(2
a
-1)p patterns) order of Step-3 is:

where, lm=l1 = largest number of item count in a pattern

Step-4: In this step, a two level nested loop executes for

each of p number of patterns generating all possible

combinations of each pattern and then checking each

combination whether it satisfies minimum confidence

threshold.

Outer loop executes times of number of patterns.

So O(p).

Combination generation step generates 2
n
-1

combinations. So O(2
a
-1)

Inner loop checks min_conf constraint for each

combination. So O(2
a
-1)

So total complexity of Step-4 is:

Total complexity of all these four steps is:

 where,

m = number of transaction

 n = number of item

 a = average item count of patterns

 lm = maximum item count found in a pattern

 p = number of final frequent pattern

B. Experimental Setup

Programming Language: Java (JDK-1.7)

IDE: NetBeans 7.1.1

Dataset: apriori.zip [8]

C. Experimental Result

The following graph shows the running time of the

proposed algorithm on a real dataset with the change of

minimum support threshold and 50% confidence

threshold. The code outputted the final patterns and the

associated rules along with their confidence percentage:

Figure 3: Minimum support threshold Vs Runtime plot

From the above chart, we see that for minimum support

threshold greater than 0.75%, the response of the

algorithm is almost constant. Moreover, in the region

between 0.25% and 0.5%, the graph falls drastically and

then it downfalls almost linearly. The response is for a

constant minimum constant threshold that is 50%. So the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

237

above chart illustrates the response of the algorithm for

constant confidence threshold but changed values of

transaction and support threshold.

D. Comparative Analysis

1. Node Generation

In the proposed algorithm, total number of node

generated after the depth-first traversal is O(2
a
-1)p

where a is the average item count of patterns and p is the

total number of patterns after refinement. It shows

output-sensitivity in the node generation complexity and

is equal to almost half of the generated node in Apriori

in which O(n
2
) nodes are generated after the first join

step. Moreover, at any time of the simulation, no more

than 2lm nodes are stored in the stack where lm is the

maximum number of item count in a pattern. So the total

node generation and nodes at any level of simulation are

both stable and minimized in the proposed algorithm.

2. Memory Consumption

As the Depth-First traversal is implemented, so it is

obviously memory efficient and stable comparing with

Apriori which implements kind of Breadth-First

traversal of the search space which requires O(n
2
)

memory at the first join step. Moreover, the data

structure used for vertical data format is minimum

storing each items existence in a transaction by a single

bit. So comparing with Apriori, memory complexity is

certainly improved.

3. Algorithm Simplicity

The proposed algorithm is much simpler than Apriori

and FP-growth. The join step of Apriori is the most

complex part of the algorithm which contains a long

chain of if-checking. Moreover, the joining is not like

the ordinary join of database operation. The FP-growth

algorithm constructs a compact data structure called FP-

tree which divides the whole database into several

projected ones and then mine each recursively thus lacks

of simplicity. On the contrary, the proposed algorithm is

just traversing the search space in depth-first manner,

backtracking whenever minimum support threshold is

not satisfied or the leaf node found in a branch. The

closure checking on these nodes is also very simple.

Finally, for each pattern all combinations are generated

and then minimum confidence threshold is checked

which implies the general procedure of generating

association rule.

4. Running Time

The run time obtained from the simulation of the

algorithm on a real large dataset containing thousands of

transactions presented above implies the scalability of

the algorithm. Moreover, after 0.5% of minimum

support threshold, the response is almost linear shows a

desired improvement with respect of candidate and

associated rule generation.

IV. CONCLUSION

Frequent pattern and Association Rule mining has been

a highly researched topic of Data Mining. Many

researchers have been showing interest and devotion for

decades in development of more efficient algorithms for

mining frequent pattern in different constrained

situations. Real life application of pattern mining is also

a point of focus for enthusiasts. Cross-marketing

decision-making and customer behavior analysis

gradually becoming a matter of interest which highly

recommends frequent pattern and association rule

mining. Therefore, we dived into Association Rule

mining as a research topic. We had done a

comprehensive study of the prominent algorithms like

Apriori, FP-Growth, ECLAT, CLOSET and CHARM

algorithm. The comparative analysis of these algorithms

led us to think of the features and drawbacks of each of

these algorithms and thereby thinking of an algorithm

which may perform equally or better on some real

dataset. The motivation is to go through an

implementation of an association rule mining algorithm

and therefore observe how existing algorithms work and

where improvement can be done.

In this paper, we presented a literature review of the

history of existing algorithms on association rule mining.

Then, we proposed an algorithm based on depth-first

traversal of the search space using vertical data format

and then finding out the set of closed frequent itemset

after closure checking and finally generating association

rules for each pattern. Next, we presented a graphical

comparison of the proposed algorithm with the existing

ones changing minimum support and confidence

threshold, size of dataset, number of transactions and

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

238

number of items along with a comparative discussion

based on the results obtained.

At the end, it can be concluded that association rule

mining is really an interesting field of data mining to

study more and more and thereby optimizing the

algorithms to meet the challenge of sustaining with more

difficult constraints to be provided in future.

V. REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large

databases. In Proc. 1993 ACM SIGMOD Int. Conf.

Management of Data (SIGMOD‘93), pages 207–

216, Washington, DC, May 1993.

[2] Jiawei Han and Micheline Kamber. Data Mining:

Concepts and Techniques, 2nd edition. Morgan

Kaufmann, ISBN 978-1-55860-901-3

[3] R. Agrawal and R. Srikant. Fast algorithm for

mining association rules in large databases. In

Research Report RJ 9839, IBM Almaden Research

Center, San Jose, CA, June 1994.

[4] A. Savasere, E. Omiecinski, and S. Navathe. An

efficient algorithm for mining association rules in

large databases. In Proc. 1995 Int. Conf. Very Large

Data Bases (VLDB‘95), pages 432–443, Zurich,

Switzerland, Sept. 1995.

[5] J. S. Park, M. S. Chen, and P. S. Yu. An effective

hash-based algorithm for mining association rules.

In Proc. 1995 ACM-SIGMOD Int. Conf.

Management of Data (SIGMOD‘95), pages 175–

186, San Jose, CA, May 1995.

[6] J. Han, J. Pei, and Y. Yin. Mining frequent patterns

without candidate generation. In Proc. 2000 ACM-

SIGMOD Int. Conf. Management of Data

(SIGMOD‘00), pages 1–12, Dallas, TX, May 2000.

[7] M. J. Zaki. Scalable algorithms for association

mining. IEEE Trans. Knowledge and Data

Engineering, 12:372–390, 2000.

[8] "Apriori - Datasets". https://wiki.csc.calpoly.edu/.

N.p., 2016. Web. 10 May 2016. Dataset source of

transaction database.

