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ABSTRACT 
 

Frequent pattern finding plays an essential role in mining associations, correlations and many more interesting 

relationships among data. Discovery of such correlations among huge amount of business transaction records can 

help in many aspects of business-related decision-making processes like catalog design, cross-marketing and 

customer shopping behavior analysis. ―Market Basket Analysis‖ is one of such applications. It involves analysis of 

customer buying patterns by finding associations between the different items that customers place in their shopping 

carts. The discovery of such associations can help retailers and analysts to develop marketing strategies by gaining 

insight into which items are frequently purchased together by customers leading to increased sales by helping 

retailers do selective marketing and design efficient store layout. 

Keywords: Frequent Pattern Finding, Association Rules, Vertical Data Format, Closed Frequent Itemsets. 

 

 

I. INTRODUCTION 

 

The phrase ―Frequent Pattern‖ means itemsets, 

subsequence or substructures that appear in a data set 

frequently [1]. For example, a set of items, such as tea 

and biscuit that appear in transaction records or 

customer invoices frequently and therefore it is a 

frequent item set. Example of a subsequence is buying 

first a Laptop, then a modem and then a portable speaker 

if it occurs frequently in a shopping database. 

 

Another two important terms in frequent itemset mining 

are closed and maximal frequent pattern. An itemset is 

closed frequent itemset in a data set which is frequent 

and has no proper super-itemset having same support 

count. An itemset is maximal in a data set if it is 

frequent and there is no super itemset of which this 

itemset can be a subset [2]. For example, if there are two 

transactions: {a,b,c,d,e} and {b,c,d} and minimum 

support threshold is set to 1, then the set of closed 

frequent itemset is: C = {{a,b,c,d,e}:1}; {{b,c,d}:2} and 

the set of maximal frequent itemset is: M = 

{{a,b,c,d,e}:1}(we cannot include {b,c,d} as maximal 

frequent itemset because there exists a frequent superset 

{a,b,c,d,e}). The set of closed frequent itemsets contains 

complete information of frequent itemsets. However, 

with the maximal frequent itemset, we can only assert 

two itemsets are frequent but cannot assert their actual 

support count. 

 

There has been extensive research in the field of mining 

frequent patterns. Apriori algorithm is probably the first 

algorithm proposed by R. Agrawal and R. Srikant [3] 

who introduced an anti-monotone property called 

Apriori property and a level-wise approach of generating 

frequent patterns having two major steps called join step 

and prune step. But this algorithm requires multiple scan 

of the transaction database each time the join step is 

performed and for a large database, complexity of this 

step is huge. To minimize database scan, vertical data 

format was introduced which scans the database once 

and stores the transaction information item-wise so that 

no further database scan is needed all information can be 

obtained from that table. This is certainly a great 
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improvement to minimize database scan and can be used 

in further study. 

This paper concentrates on two major aspects: 

 

 Find all frequent itemsets: By definition, each 

of these itemsets will occur at least as frequently 

as a predetermined minimum support count, 

min_sup.  

 Generate strong association rules from 

frequent itemsets: By definition, these rules must 

satisfy minimum support (min_sup) and minimum 

confidence (min_conf).  

 

Out of these two steps, the second step is much less 

costly then the first, so the overall performance is 

determined by the first step. The first step involves a 

major challenge of minimizing the generation of a huge 

number of itemsets if min_sup is set low. Because a 

frequent itemset guarantees each of its subsets to be 

frequent, so a long itemset will contain a combinatorial 

number of shorter, frequent sub-itemsets. For example, a 

frequent itemset of length 100, such as {a1, a2… a100} 

contains = 100 frequent 1-itemsets: a1, a2… a100, = 

4950 frequent 2-itemsets: (a1, a2), (a1, a3) … (a99, a100) 

and so on. So total number of frequent itemsets that it 

contains is:  

 

(
   

 
)  (

   

 
)  (

   

 
)    (

   

 
) 

        

           

This is too huge a number of itemsets for any computer 

to compute or store. To overcome, the concepts of 

closed and maximal frequent itemsets are introduced. 

 

II. METHODS AND MATERIAL 
 

Literature Review 

 

In this paper we are concentrating on the three major 

scalable mining methods mentioned as below: 

 Apriori (Agrawal & Srikant@VLDB‘94) 

 Frequent pattern growth (FPgrowth—Han, 

Pei & Yin @SIGMOD‘00)  

 Vertical data format approach (Charm—

Zaki& Hsiao @SDM‘02)  

Scalable mining methods are based on the Downward 

Closure Property of frequent patterns. That is: “Any 

subset of a frequent itemset must be frequent”. 

 

For example, if the itemset {milk, bread, butter} is 

frequent then any subset of it like {bread, butter} or 

{milk, butter} is also frequent. 

A. Apriori (Candidate Generation-and-Test 

Approach) 

Apriori is the basic algorithm for finding frequent 

itemsets for Boolean association rules proposed by R. 

Agrawal and R. Srikant in 1994. It employs an iterative 

level-wise search and hash tree structure where k-

itemsets are used to explore (k+1)-itemsets. They 

presented a property to reduce search space known as 

Apriori Property: 

“All non-empty subsets of a frequent itemset must also 

be frequent” 

 

It is based on the following observation that if an itemset 

I does not satisfy min_sup, then I is non-frequent. If an 

item A is added to the itemset I, then the resulting 

itemset cannot occur more frequently than I. Therefore, 

I∪A is not frequent either. 

 

This property belongs to a special class of properties 

called anti-monotone which claims that if a set cannot 

pass a test, all of its supersets will fail the same test as 

well. 

 

The Apriori is known as Candidate Generation and Test 

algorithm consisting of Join and Prune step. In the join 

step, the set of candidate k-itemsets Lk is generated by 

joining Lk-1 with itself. This joining assumes that items 

within a transaction or itemset are sorted in 

lexicographic order. In the prune step, a database scan is 

performed to find the candidates satisfying minimum 

support threshold and prune the rest. But the number of 

candidates can be huge therefore to reduce the size of 

candidates, Apriori property is applied. The subset 

testing to implement Apriori property can be done 

quickly by maintaining a hash tree of all frequent 

itemsets. 

 

The main advantages of apriori algorithm are as follows: 

 Uses large itemset property 
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 Easily parallelized 

 Easy to implement 

The disadvantages of Apriori Algorithm can be 

mentioned as like, 

 Assumes transaction database is memory 

resident 

 Requires many database scans 

 Huge number of candidates 

 Tedious workload of support counting for 

candidates 

1)  Bottleneck of Frequent-pattern Mining 

In Apriori, multiple database scan is incurred which is 

costly. Mining long patterns needs many passes of 

scanning and thus generates lots of candidates. To find 

frequent itemset i1, i2… i100. 

 

Number of scans: 100  

 

Number of Candidates:  

 

(
   

 
)  (

   

 
)  (

   

 
)    (

   

 
)        

           

This is unpleasantly too huge a number of itemsets for 

any computer to compute or store. 

2)  General ideas for improving efficiency of 

Apriori: 

a) Transaction reduction:  A transaction that does 

not contain any frequent k-itemset is useless in 

subsequent scans. 

b) Partitioning:  Any itemset that is potentially 

frequent in database must be frequent in at least 

one of the partitions of database [4]. 

c) Hash-based itemset counting: A k-itemset 

whose corresponding hashing bucket count is 

below the threshold cannot be frequent [5]. 

d) Sampling:  Mining on a subset of given data, 

lower support threshold along with a method to 

determine the completeness. 

e) Dynamic itemset counting:  Add new candidate 

itemsets only when all of their subsets are 

estimated to be frequent. 

f) Avoid candidate generation:  Grow long patterns 

from short ones using local frequent items. 

B. Mining Frequent Patterns using FP-Growth 

Approach 

FP Growth is rather a different approach which mines 

frequent itemsets without candidate generation. It 

recursively grows frequent patterns by pattern and 

database partition. It is based on a prefix tree 

representation of the given database of transactions 

(called an FP-tree) [6], which can save considerable 

amounts of memory for storing the transactions. The 

basic idea of the FP-growth algorithm is known as 

Recursive Elimination Scheme inside of which a pre-

processing step delete all items from the transactions 

that are not frequent individually and then select all 

transactions that contain the least frequent item and 

delete that item. It transforms the problem of finding 

long frequent patterns to search for shorter ones 

recursively and then concatenating the suffix. It uses the 

least frequent items as a suffix offering good selectivity 

resulting a substantially reduced search cost. 

 

This method is capable of mining frequent patterns or 

frequent sequential patterns or frequent structural 

patterns without candidate generation which is a great 

improvement over Apriori algorithm. 

 

Now it is time to discuss how FP-Growth algorithm 

achieved this improvement. It is actually done by using 

Tree Projection (described by Agarwal et al. (2001)) 

which: 

 creates a lexicographical tree 

 projects database into sub-databases based on 

the patterns mined so far 

 recursively mines sub-databases 

1)  Simulation of FP-Growth Algorithm: 

FP-Tree construction FP-tree constructed for the above 

transaction database and conditional pattern base of each 

item is given below:  

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

233 

Figure 1. Construction ofFP-tree and Conditional Pattern 

Base of each item 

For a large database, constructing a main-memory based 

FP-tree is undesirable. To overcome, first partition the 

database into a set of projected databases and then 

construct FP-tree and mine each projected database. A 

comparative study results that FP-Growth is efficient 

and scalable for mining both long and short frequent 

patterns and about an order of magnitude faster than 

Apriori algorithm and also faster than Tree-Projection 

algorithm. 

C. Mining Frequent Pattern using Vertical Data       

Format 

 

Both Apriori and FP-growth mine frequent patterns from 

transactional database in {TID:itemset} form known as 

Horizontal Data Format. Alternatively, data can be 

stored in the form {item:TID_set} where item is an item 

name and TID_set is the set of transactions containing 

that item and this form is known as Vertical Data Format. 

An algorithm known as ECLAT (Equivalence CLASS 

Transformation) was developed by Zaki [7] that 

implemented this vertical format data structure to store 

the transactional database.  

 

Vertical Data Format brings a modification in the data 

structure by storing information in item wise fashion 

rather transaction-wise manner as stored in earlier 

algorithms. This change results only single database 

scan transforming into vertical format. Then it applies 

the Apriori property to generate (k+1)-itemsets from k-

itemsets by intersecting the set of transaction IDs and 

unlike Apriori, this step requires no database scan 

because vertical data format stores complete information 

required for counting support.  

 

Table 1 : A Transaction Database of a Retail Shop 

 

TID List of 

item_IDs 

T100 I1,I2,I5 

T200 I2,I4 

T300 I2,I3 

T400 I1,I2,I4 

T500 I1,I3 

T600 I2,I3 

T700 I1,I3 

T800 I1,I2,I3,I5 

T900 I1,I2,I3 

 

Initial step is to scan the transactional database and 

construct vertical data format table like as given below 

for the transactional database of Table-2: 

 

Table 2: Vertical data format for transaction dataset of 

Table 1 

 

itemset TID_set 

I1 {T100,T400,T500,T700,T800,T900} 

I2 {T100,T200,T300,T400,T600,T800,T900} 

I3 {T300,T400,T600,T700,T800,T900} 

I4 {T200,T400} 

I5 {T100,T800} 

 

Now it approaches the candidate generation and test 

approach like Apriori and generates 2- itemsets and 3-

itemsets as given below:  

 

Table 3: Frequent 2 and 3 itemsets generation in vertical 

data format 

 

Frequent 2-itemsets 

itemet TID_set 

I1,I2 {T100,T400,T800,

T900} 

I1,I3 {T500,T700,T800,

T900} 

I1,I4 {T400 } 

I1,I5 {T100,T800 } 

I2,I3 {T300,T600,T800,

T900} 

I2,I4 {T200,T400} 

I2,I5 {T100,T800} 

I3,I5 {T800} 
 

 Frequent 3-itemsets 

itemset TID_set 

I1,I2,I3 { 

T800,T90

0} 

II,I2,I5 {T100, 

T800} 

  
 

  

Vertical Data Format algorithm not only takes the 

benefit of Apriori property to generate candidate (k+1)-

itemsets from frequent k-itemsets, but also minimizes 

number of database scan to one because like Apriori it 

does not need to scan at each join step rather it retrieves 

the complete information required from vertical format 

table.  

 

However, if TID_set is quite long, it takes much 

computation for intersection of long sets. To resolve, a 

technique called Diffset was introduced which stores 

only the difference of TID_sets. For example, in the 

above example, we had {I1} = {T100, T400, T500, 
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T700, T800, T900} and {I1, I2} = {T100, T400, T800, 

T900} therefore Diffset ({I1}, {I1, I2}) = {T500, T700}. 

 

D. Comparative discussion of Scalable Algorithms 

 

All these three algorithms have some advantages and 

flaws as well. Apriori uses an anti-monotone property to 

reduce candidate generation but involves a considerable 

amount of database scan which is overcome in Vertical 

Data format with a slight change of data structure. 

Moreover, FP Growth implements an approach without 

candidate generation but for a large database, a main 

memory based FP-tree is an unrealistic outcome which 

can be resolved by partitioning into a set of projected 

databases and then constructing FP-tree for each. 

 

If the vertical data format can be added with a depth-first 

candidate generation out of the search space, then it can 

be a good variation in the evolution of mining closed 

frequent patterns. The point of thought is that both 

Vertical Data Format and Apriori algorithms employ 

Apriori property with a kind of breadth-first traversal of 

the search space which consumes a considerable 

memory at initial levels. If there can be implemented 

depth-first traversal with the vertical data format at the 

same time, it will result the least amount of database 

scan along with improved space complexity. The 

motivation of the paper is to develop such an algorithm 

which will be to some extent a blending of the benefits 

of the existing algorithms. Moreover, it will ultimately 

mine closed frequent itemsets performing additional two 

types of closure checking in an optimized way thus 

leading to the development of a closed frequent itemset 

mining algorithm. 

 

III. RESULTS AND DISCUSSION 

 
1.  Proposed Algorithm 

 

In our research work we are proposing a new algorithm 

named ―A Depth-first Closed Frequent Pattern & 

Association Rule Mining Algorithm‖. This algorithm 

will help to find closed frequent itemsets with an Item-

wise Depth-first approach using vertical data format. 

A. Input 

 D, a database of transactions containing m 

transactions of n items; 

 minsup, the minimum support count threshold 

 minconf, the minimum confidence threshold 

 

B. Output 

The output of the program is a full list of closed frequent 

itemset patterns. It will also output a list of association 

rules of the database of transactions containing m 

transactions of n items i.e. D. 

 

C. Method 

 

fori=1 to m do 

for j=1to n do 

  Scan database D once and store  

transaction’s array in  

verticaldataarrayvArray 

fori=1 to (n-1) do 

if (vArray[i].supportCount>= minsup) 

while traversing tree of ith item in 

Depth-first manner 

if (any pattern with 

supportCount<minsup is found or       

a leaf node isvisited) 

    Add pattern found so far longest 

in this branch into pattern 

    Backtrack; 

Add nth item to patterns if     

vArray[an].supportCount>=minsup 

for each pattern S1 in patterns do 

for each pattern S2 in patterns do 

if((S1.itemCount < S2.itemCount) 

&&existCommonItem(S1,S2)==true)do 

if (S2 contains S1) 

patterns.remove(S1); 

break; 

else if (S1 is longest common 

subpattern of S2) 

patterns.remove(S1); 

for each pattern p in patterns do 

Store each item of p in a Set S 

Generate all combinations of items 

inS and put them in a 

list L 

for each combination c in L do 

Take intersection of                               

transaction_arrays of items of c   

into lhs   

Take intersection of 

transaction_arrays of items of    

       {S-c}intorhs 

Take intersection of lhs &rhs into  

result 

if((Item count of (lhs &rhs)/Item  
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     count of rhs)>=minconf) 

 AddString.format(c.toString()+" -

>"+(S-{c}).toString()) to  

associationrules; 

 

D. Simulation 

 

Here, a simulation of the proposed algorithm on 

transaction database of Table-I is given below and 

thereby observe how the algorithm proceeds. 

For the transaction database of Table-I with min_sup = 2, 

the search space traversal of the proposed algorithm is 

shown below: 

 

  

Figure 2: Tree traversal of the proposed algorithm for the 

transaction of Table-I 

1) First of all, the transaction database is stored in 

vertical data format which is performed in Line: 1-3 

of algorithm:  

 

Table 4. Item_Id and Transaction_Array in Vertical 

Data Format 

 

Item_ID Transaction Array 

I1 1,0,0,1,1,0,1,1,1 

I2 1,1,1,1,0,1,0,1,1 

I3 0,0,1,0,1,1,1,1,1 
I4 0,1,0,1,0,0,0,0,0 

I5 1,0,0,0,0,0,0,1,0 

 

2) Now the search space is traversed in Depth-First 

manner in Line: 4-10 of algorithm. So, first the 

branch 1>12>123>1234>12345 is visited. It will be 

found that at node ‗1234‘, min_sup constraint is not 

satisfied, so the longest pattern found in this branch 

that is ‗123‘ is added to patterns and no more node is 

visited in this branch. 

 

In this manner, all the 11 nodes satisfying min_sup are 

added to patterns list and indicated by solid line ellipse 

in the tree. The dotted ellipse nodes are those patterns 

which are checked and pruned without branching deeper. 

 

3) In this step, two types of closure checking: whether 

a pattern is a subset or a superset of another pattern 

and if so, remove it from patterns. This closure 

checking is done within line: 11-18 of the algorithm. 

For example, ‗123‘ is a super-node for ‗12‘, ‗23‘ and 

‗13‘. To check ‗12‘ and ‗23‘ as a subset of ‗123‘, a 

slightly customized version of Java String function 

containsOf() is used. Checking of ‗13‘ to be a subset 

of ‗123‘ is much similar to the prominent Longest 

Common Subsequence problem the solution of 

which is also employed here. Thus, ‗1‘, ‗2‘, ‗3‘, ‗4‘, 

‗12‘, ‗23‘ and ‗25‘ are removed using containsOf() 

function as they are subsets of ‗123‘ and ‗125‘. ‗13‘ 

is removed using LCS () function. Finally ‗123‘, 

‗125‘ and ‗24‘ are the ultimate patterns.  

4) Association rule generation for each pattern is done 

in this step within line: 19-27 of algorithm. For 

example, consider the pattern ‗123‘. First, all the 

combinations of ‗123‘ are derived which are: ‗1‘, ‗2‘, 

‗3‘, ‘12‘, ‘13‘, ‘23‘, ‘123‘. Now for each 

combination, we put the combination on left hand 

side and the complement set on the right hand side 

and then calculate the ratio of support count of right 

side to support count of left side and if this ratio is 

equal or greater than the min_conf percentage, then 

we add this rule to associationRules as: LHS ⇒ RHS. 

For the pattern ‗123‘, the following rules are 

generated:  

 

I1ΛI2 ⇒ I5, confidence = 2/4 = 50% 

I1ΛI5 ⇒ I2, confidence = 2/2 = 100% 

I2ΛI5 ⇒ I1, confidence = 2/2 = 100% 

I1 ⇒ I2ΛI5, confidence = 2/6 = 33% 

I2 ⇒ I1ΛI5, confidence = 2/7 = 29% 

I5 ⇒ I1ΛI2, confidence = 2/2 = 100% 

 

If min_conf was set to 50%, then except 4th and 5th 

rules, rest will be added to the list associationRules. 

 

2. Result Analysis 

A. Complexity Calculation: 
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Step-1: Two nested loop scans the whole transactional 

database where outer loop executes m times and inner 

loop executes n times. So order is O(mn). If there are q 

no of 1s in the transactional database in total, then inside 

loop only q number of set operation will be executed on 

the vertical format data structure where 0≤q≤mn. 

 

Step-2: Traversing the search space in depth-first 

manner yields a complexity of O(2a-1)p where a is the 

average item count in each pattern and p is the number 

of pattern finally obtained. 

 

Step-3: At this step, two types of closure checking is 

performed on the patterns generated at previous step. A 

two-step nested loop is run inside of which three types 

of filtering is done in an if-elseif-else ladder to check 

whether a pattern is a superset or subset of another 

pattern. If S1 and S2 be two patterns containing l1 and l2 

number of items respectively, then, 

 

1. If S1 and S2 contain no common item then don‘t 

check further. It is O(min(l1, l2))  

2. If S1 contains wholly inside S2 then remove S1.  

3. If S1 is the longest common sub-pattern of S2 

then remove S1. It is O(l1,l2))  

So an upper bound (if case-3 is invoked for each of  

(2
a
-1)p patterns) order of Step-3 is:  

                     

                    
      

                                                 

                                            

where, lm=l1 = largest number of item count in a pattern 

 

Step-4: In this step, a two level nested loop executes for 

each of p number of patterns generating all possible 

combinations of each pattern and then checking each 

combination whether it satisfies minimum confidence 

threshold.  

# Outer loop executes times of number of patterns. 

So O(p).  

# Combination generation step generates 2
n
-1 

combinations. So O(2
a
-1)  

# Inner loop checks min_conf constraint for each 

combination. So O(2
a
-1)  

So total complexity of Step-4 is:  

 

                              

 

Total complexity of all these four steps is:  

 

                                   
    

                        
        

                              
        

               
     

 where,     

m = number of transaction  

 n = number of item  

 a = average item count of patterns  

 lm = maximum item count found in a pattern  

 p = number of final frequent pattern 

 

B.  Experimental Setup  

 

Programming Language: Java (JDK-1.7)  

IDE: NetBeans 7.1.1  

Dataset: apriori.zip [8]  

C. Experimental Result  

 

The following graph shows the running time of the 

proposed algorithm on a real dataset with the change of 

minimum support threshold and 50% confidence 

threshold. The code outputted the final patterns and the 

associated rules along with their confidence percentage: 

 

Figure 3: Minimum support threshold Vs Runtime plot 

From the above chart, we see that for minimum support 

threshold greater than 0.75%, the response of the 

algorithm is almost constant. Moreover, in the region 

between 0.25% and 0.5%, the graph falls drastically and 

then it downfalls almost linearly. The response is for a 

constant minimum constant threshold that is 50%. So the 
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above chart illustrates the response of the algorithm for 

constant confidence threshold but changed values of 

transaction and support threshold. 

D. Comparative Analysis 

 

1. Node Generation 

 

In the proposed algorithm, total number of node 

generated after the depth-first traversal is O(2
a
-1)p 

where a is the average item count of patterns and p is the 

total number of patterns after refinement. It shows 

output-sensitivity in the node generation complexity and 

is equal to almost half of the generated node in Apriori 

in which O(n
2
) nodes are generated after the first join 

step. Moreover, at any time of the simulation, no more 

than 2lm nodes are stored in the stack where lm is the 

maximum number of item count in a pattern. So the total 

node generation and nodes at any level of simulation are 

both stable and minimized in the proposed algorithm. 

 

2. Memory Consumption 

 

As the Depth-First traversal is implemented, so it is 

obviously memory efficient and stable comparing with 

Apriori which implements kind of Breadth-First 

traversal of the search space which requires O(n
2
) 

memory at the first join step. Moreover, the data 

structure used for vertical data format is minimum 

storing each items existence in a transaction by a single 

bit. So comparing with Apriori, memory complexity is 

certainly improved. 

 

3. Algorithm Simplicity 

 

The proposed algorithm is much simpler than Apriori 

and FP-growth. The join step of Apriori is the most 

complex part of the algorithm which contains a long 

chain of if-checking. Moreover, the joining is not like 

the ordinary join of database operation. The FP-growth 

algorithm constructs a compact data structure called FP-

tree which divides the whole database into several 

projected ones and then mine each recursively thus lacks 

of simplicity. On the contrary, the proposed algorithm is 

just traversing the search space in depth-first manner, 

backtracking whenever minimum support threshold is 

not satisfied or the leaf node found in a branch. The 

closure checking on these nodes is also very simple. 

Finally, for each pattern all combinations are generated 

and then minimum confidence threshold is checked 

which implies the general procedure of generating 

association rule. 

4. Running Time 

 

The run time obtained from the simulation of the 

algorithm on a real large dataset containing thousands of 

transactions presented above implies the scalability of 

the algorithm. Moreover, after 0.5% of minimum 

support threshold, the response is almost linear shows a 

desired improvement with respect of candidate and 

associated rule generation. 

 

IV. CONCLUSION 
 

Frequent pattern and Association Rule mining has been 

a highly researched topic of Data Mining. Many 

researchers have been showing interest and devotion for 

decades in development of more efficient algorithms for 

mining frequent pattern in different constrained 

situations. Real life application of pattern mining is also 

a point of focus for enthusiasts. Cross-marketing 

decision-making and customer behavior analysis 

gradually becoming a matter of interest which highly 

recommends frequent pattern and association rule 

mining. Therefore, we dived into Association Rule 

mining as a research topic. We had done a 

comprehensive study of the prominent algorithms like 

Apriori, FP-Growth, ECLAT, CLOSET and CHARM 

algorithm. The comparative analysis of these algorithms 

led us to think of the features and drawbacks of each of 

these algorithms and thereby thinking of an algorithm 

which may perform equally or better on some real 

dataset. The motivation is to go through an 

implementation of an association rule mining algorithm 

and therefore observe how existing algorithms work and 

where improvement can be done.  

 

In this paper, we presented a literature review of the 

history of existing algorithms on association rule mining. 

Then, we proposed an algorithm based on depth-first 

traversal of the search space using vertical data format 

and then finding out the set of closed frequent itemset 

after closure checking and finally generating association 

rules for each pattern. Next, we presented a graphical 

comparison of the proposed algorithm with the existing 

ones changing minimum support and confidence 

threshold, size of dataset, number of transactions and 
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number of items along with a comparative discussion 

based on the results obtained.  

 

At the end, it can be concluded that association rule 

mining is really an interesting field of data mining to 

study more and more and thereby optimizing the 

algorithms to meet the challenge of sustaining with more 

difficult constraints to be provided in future. 
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