
IJSRSET152211 | Received: 1 March 2015 | Accepted: 5 March 2015 | March-April 2015 [(1)2: 31-34]  

Themed Section:  Engineering and Technology 

 

31 

 

Building Virtual Machine Instance, Compatible with User’s Web Application in 
Openstack Cloud Provider 

Srinija T,   Sangeetha T,  Sanjena K , Arulmozhi Arasi D S 
Dhanalakshmi College of Engineering, Chennai, Tamilnadu, India 

ABSTRACT 
 

Users not aware of composition of cloud services that are compatible or not is considered to be a main issue. They are not 

aware of web applications dependencies and Configuration details. Their organize functions can be misconfigured. 

Therefore, Open Stack is used  which is a global collaboration of developers and cloud computing technologists 

producing the open source cloud computing platform for public and private clouds and it simplifies Cloud service 

composition for non-expert  users, which is the best to build Virtual Instance .Cloud services consisting of virtual 

appliance and units are compatible with each other. Our system helps non-expert users with limited or no knowledge on 

legal and image format compatibility issues to deploy their services faultlessly. User can build their own instance based 

on his/her requirements using j cloud which  is an open source library that helps you get started in the cloud and provides 

access to  cloud-specific features. J clouds tests cloud software stacks including Open Stack which Web applications 

dependencies are available, the only thing is user has to select their web application dependencies based on his/her 

preferences. Real time process can be viewed in Open Stack Dashboard. Using putty, user connects to IP assigned for the 

virtual instance. Now user connects into Virtual Instance. Giving file transfer command, user transfer their web 

application to Virtual instance. User can also transfer database files to Virtual Instance. Now user can deploy their web 

applications in Virtual Instance. 

Keywords: Cloud Computing; Cloud Service Composition; Open Stack Cloud provider, PaaS IaaS 
 

 

I. INTRODUCTION 

 

In order to distribute their results, application server 

providers can either take the advantages of Platform-as-

a-Service (PaaS) contribution such as Google App 

Engine and Open Shift or improve their self-

congregation contexts by hiring the intent apparatus 

from Infrastructure-as-a-Service. On the other hand, 

majority of PaaS services have limits on the software 

development semantics, occurrence stage that can be 

used to improve the appliances. Such limits assist the 

service providers to construct their self-stage using IaaS 

service contribution. 

 

One of the significant tasks in constructing a stage for 

organizing the appliances is to spontaneous formulate, 

pattern, and organize the essential appliances that 

consists of a statistic of dissimilar constitution. If we 

consult the organize provisions of a network appliances 

service provider, it will involve safety kit, network 

hostess, appliances hostess, index hostess. Fitting 

together a particular difficult grouping of equipment is 

expensive and fault level in usual congregation contexts. 

They are construct and pattern with essential system 

software and to meet program provisions of an end user. 

A end user could need more than one intent equipment 

and apparatus, and a structure of them that capable of 

conflict all the provisions of end users is needed. Then, 

the choosing of the most excellently composition is an 

obscure mission due to this there is no ranking system. 

 

In inclusion, the top groups discovered for separate 

equipment’s cannot be cleanly commit together as they 

could never be compatible with the congregation 

contexts. Managing with all these complexities is 

expensive, annoying for uneducated end users and assist 

them to search for educated support. The present paper, 

to make easier the procedure of choosing the most 

excellently intent equipment and element composition, 

an original agenda is granted. The agenda follows: 

 

An advance to support uneducated end users with no 

information on official and intent equipment vision 

arrangement compatibility reservations to organize their 

© 2015 IJSRSET | Volume 1 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099  



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

32 

services perfectly. For this intention, we first 

spontaneously create a container of Cloud services in 

Web Service Modelling Language (WSML). The 

information base then is nearly new for analysis that 

specifies either a set of Cloud services contains an intent 

equipment and element are compatible or not. 

 

A Cloud service composition access expertise that 

permits uneducated Cloud handler to setting their 

priority using huge stage if-then instruction and get user 

friendly suggestion on the composition results eminence. 

The bulk of end users abstain methods that suffer 

complexity in taking their constraints, detached and 

choices. In this instance, users exhibit to discover a 

method to order their desires and then record them to 

encumbrances.  

 

Later on, the organisation has to detect how exact users 

have passed within the procedure of encumbrance’s 

obligation. Tounder take this consequence, a main 

neutral of this experimentation is to deal ranking system 

for Cloud service composition that let users deliver their 

priority conveniently using huge stage semantic 

instruction. 

 

II. METHODS AND MATERIAL 

 

Related Work and Problem Analysis 

A. Related work 

 

A simple set of intent usage and element will not 

capable to achieve all the makings of commercial 

difficulties. Certainly the majority of difficulties will 

need more than one of those services functioning 

composed to present a finished results. 

 

Konstantin Ou et al. [24] proposed an advance to 

scheme, typical, and organize Cloud service 

compositions. In propose the result typical and the 

deployment scheme for the composition in Cloud 

platform are grown by educated handlers and performed 

by uneducated users. 

 

B.   Problem analysis 

We develop the composition results variance and 

confluence and reduce the implementation time. Though, 

many of them only core on compatibility of compute 

and production of services in a composition. In our 

circumstance we are not worried of incompatibilities; 

rather we are attracted in modelling incompatibilities 

that are caused by principles. 

 

Composition Accession 

A.  Optimization 

 

In our difficulty we examine user platform, the less rate, 

fast organization period, and the huge dependable. This 

compels it absurd to determine an ideal composition. 

Though, this reach is blunder and unusable, as not all the 

handlers have the awareness to correctly allocate strains 

to objectives. Furthermore, since the composition results 

will base on the ability of handlers to allocate good 

strain to the objectives, in excess we have to determine a 

way to execute the awareness of users about each 

objective to make sure the exactness of the approach. 

 

B. Fuzzy Deduction 

Our proposed fuzzy implication instrument contains 

three inputs and one output. Inputs of the scheme are 

typecast Deployment Time (DT), Deployment Cost 

(DC), and Reliability of composition, which are all 

detailed placed on the similar association objects. It 

takes the association objects for output by which we 

permit the regular evaluation of the association of units 

in a set. For example, the value "0" in output means the 

result is highly rejected whereas the value"1" shows that 

the result is highly accepted. Fuzzy instructions should 

be defined by the user to explain their advantages. For 

example an instruction can be clear as: if DT is less and 

DC is less and Reliability is high, composition is highly 

accepted. 

 

Estimation of Composition Ethics 

 

The composition difficulty is to discover the greatest 

grouping of compatible intent functions and intent 

apparatus that minimizes the organisation rate and 

compatibility. 

 

A.  Compatibility 

When numerous Cloud services are collected together, 

they should be compatible with each other. In this work, 

we consider official and vision configure compatibility 

constraints. 

 

1) Intent function vision configures compatibility: We 

decide the organisation work, we have to realize whether 

the vision configure of a selected series of intent 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

33 

function are compatible with the target intent element 

provider. 

 

2) Official requirements: In Cloud structure, intent 

apparatus can be organised in information focus situated 

in dissimilar portion of the world. However, there are 

official requirements; therefore, we demand to make 

sure that the intent functions can be officially organized 

on the chosen intent elements. 

 

To estimate the value of compatibility requirements, first 

analyse the cloud service composition, where 

compatibility restriction are lay on by resulting from in 

the make of an accept truth (set by an expert). 

 

Establish on the compatibility restriction opinion in our 

work, the compatibility cam be determine. 

 

A. Compatibility checking algorithm 

Input: User Preferences 

1. Get web application dependencies from user which 

includes OS, Web Server and Database. 

2. Get Budget from the user for                              

Virtual Instance 

3. Check all the services provided by the user with the 

Cloud Service Composition. If the Virtual Instance 

provided for user budget, then move to next step. 

Otherwise service can’t be provided for user budget. 

4. Next, get the details about user’s         web 

application. 

5. Get the RAM size for user’s web application to 

create Virtual Instance. 

6. Match the user preferences with the Cloud Service 

Composition. 

7. Check the web application type and RAM provided 

by the user. If the application is lightweight and 

normal, RAM can. 

 

B. Rate 

The rate occupied in gaining and using intent 

equipment’s can be ranked as chases: 

 

1. Remuneration Rate 

Rate occupied in buying the intent equipment, such as 

permitting rate, rate of the intent apparatus and any rate 

related with organization such as the information 

transmission rate to transmit the equipment’s to the 

intent apparatus at the IaaS provider. To construct a 

server, let us think equipment avid received from 

provider and intent apparatus is received from provider. 

 

2. Maturation Rate 

It will inject the rate of operation the intent function, 

namely the rate of information transmits. Here we think 

only the rate related by means of information transmits 

as Maturation Rate. 

 

3. Disarmament Rate 

Disarmament Rate mostly contain actual and exclusion 

rate of the information at the last part of the function 

growth such as the information sanitization. The 

quantity of information gathered will change from server 

to server. 

 

III. RESULTS AND DISCUSSION 
 

The main aim of the architecture is ease of use for 

limited knowledge users, semantic more precise 

determine and chosen more recoverability service 

level agreement (SLA) monitoring, and automatic 

negotiation strategy. The proposed architecture is 

depicted and its main equipment’s are described 

below: 

 

A. Cloud Service Repository 

User register their details the server in turn stores the 

user data in database. Advertisement of two default 

images of service provider is done. User buys images 

based on their requirements. And they can modify 

their information and updated information stored in 

database. Advertisement of two default instances of 

service provider is available. User buys instances 

based on their requirements. An advertisement of a 

computing instance can contain descriptions of its 

gimmicks, costs, and the legitimacy time of the 

promotion. 

 

B. Instance Production                                                    

This system helps non-expert users with limited or no 

knowledge on legal and image format compatibility 

issues to deploy their services faultlessly. User can 

build their own instance based on his/her 

requirements. User can select their Web application 

dependency which includes Operating Systems, RAM, 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

34 

and Database etc. Compatibility checking of cloud 

services is done 

 

Web applications dependencies are available, the only 

thing is user has to select their web application 

dependencies based on his/her preferences. User can 

deploy application. The user checks their newly 

created instances in launching an Instance module. 

 

C. Compatibility Checking 

Web application Dependency and configuration 

details can be done based on user preferences which 

include compatibility checking using j clouds. J cloud 

which is an open source library that helps you gets 

started in the cloud and provides access to cloud-

specific features. J cloud tests cloud software stacks 

including Open Stack which Web applications 

dependencies are available. 

 

D. Cloud service provider 

This includes Open Stack Cloud Provider which is a 

global collaboration of developers and cloud 

computing technologists producing the open source 

cloud computing platform for public and private 

clouds and its simplifies Cloud service composition 

for non-expert  users, which is the best to build 

Virtual Instance. Cloud services consisting of virtual 

appliance and units are compatible with each other. 

 
 

Figure 1: System Flow 

E. Deploy Application 

Instance launched using j clouds, based on specified 

RAM and instance name. Start and end execution 

time of the instance will be noticed. Instance will be 

created in Open Stack Dashboard. A separate IP will 

be created for each instance. Now user can view their 

virtual instance in Open Stack. Using putty, user 

connects to IP assigned for the virtual instance. Now 

user connects into Virtual Instance. Giving file 

transfer command, user transfer their web application 

to Virtual instance. User can also transfer database 

files to Virtual Instance. Now user can deploy their 

web applications in Virtual Instance. Real time 

process is shown in Open Stack Dashboard. 

 
IV. CONCLUSION 

 
In this paper, we have investigated the Cloud service 

composition challenges, which helped us to construct a 

composition with a set of compatible services. Here, we 

use Open Stack Cloud provider which is the best Virtual 

Instance.To build virtual instance, 4GB of storage is 

enough. Cloud services consisting of virtual appliance 

and units are compatible with each other. Our system 

helps non-expert users with limited or no knowledge on 

legal and image format compatibility issues to deploy 

their services faultlessly. User can build their own 

instance based on his/her requirements. Web 

applications dependencies are available, the only thing is 

user has to select their web application dependencies 

based on his/her Real time process can be viewed in 

Open Stack Dashboard. 

 

V. REFERENCES 

 
[1] A.Dastjerdi and R. Buyya, “Anautonomous reliability-

awarenegotiation strategy for cloud computing environments,” 
in Proceedings of 12th IEEE/ACM International Symposium on 
Cluster ,Cloud and Grid Computing. IEEE, 2012. 

[2] M. Kiran, M. Jiang, D. Armstrong, and K. Djemame, 
“Towardsa service lifecycle based methodology for risk 
assessment in cloud computing,” in Proceedings of Ninth 
International Conference on Dependable, Autonomic and 
Secure Computing, 2011. 

[3] J. Durillo and A. Nebro , “jmetal: A java framework formulti-
objective optimization,” Advances in Engineering Software, 
vol. 42, no. 10, pp. 760–771, 2011. 

[4] F. Rosenberg, M. Muller, P. Leitner, A. Michlmayr, A. 
Bouguettaya, and S. Dustdar, “Metaheuristic optimization of 
largescaleqos-aware service compositions,” in Proceedings of 
IEEE International Conference on Services Computing, 2010. 

[5] F. Lecue and N. Mehandjiev, “Towards scalability of quality 
driven semantic web service composition,” in Proceedings of 
IEEE International Conference on Web Services. IEEE, 2009. 

[6] M. Alrifai, T. Risse, P. Dolog, and W. Nejdl, “A scalable 
approach for qos-based web service selection,” in Proceedings 
of Service-Oriented Computing–ICSOC Workshops, 2009. 


