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ABSTRACT 
 

Hadoop is an open source implementation of Google’s MapReduce framework. MapReduce is the heart of the 

apache’s Hadoop. The file system which is used by the Hadoop for storing the files is known as Hadoop distributed 

file system (HDFS) which is an open source implementation of the google file system (GFS). Hadoop allows the 

parallel processing of the large data sets by splitting the larger data set into smaller partitions and each partition is 

fed to the separate task in the data node by the job tracker. The data node is the node where the data actually resides. 

The task tracker resides on the data node and it runs the tasks and also reports the status of the tasks to the job 

tracker. In a MapReduce, the slowest running task decides the job completion time. If the task is slower, it delays 

the progress of the entire job. This slowest running task is known as the straggler. There can be many reasons for the 

straggler to occur. One of the reasons is the data skew. This paper reviews the different types of the data skew, 

where in MapReduce data skew can occur and what is the measure taken to overcome these problems. 
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I. INTRODUCTION 

 

Apache’s Hadoop is an open source implementation of 

the Google’s Map/reduce. World Wide Web has proved 

to be the efficient platform for developing applications 

which are data intensive in nature. As huge volumes of 

the data are generated day by day, more number of 

popular applications becomes data-intensive in nature. 

This makes the data mining and web indexing 

applications to access the largely expanding data sets 

ranging from gigabytes to several tear or peat bytes. By 

the help of the MapReduce model, the google processes 

the 20 peat bytes of the data per day in a parallel 

Fashion. The performance and the scalability of the 

MapReduce are increased because in a MapReduce 

model the large data set is split into many smaller 

partitions and the job is then partitioned into numerous 

smaller tasks. All these smaller tasks run on the multiple 

different nodes in a cluster. For example, YAHOO 

makes use of a cluster consisting of the 10,000 nodes to 

process. 

 

Hundreds of tear bytes of data generated. Facebook 

generates about 15 TB of data per day and it is also 

processed by the Hadoop. Websites like, the amazon 

also makes use of the Hadoop to process huge volumes 

of the data on daily basis. Scientific applications like the 

seismic simulation and NLP also makes use of the 

Hadoop to the fullest. In a MapReduce, data locality 

determines the MapReduce performance. To prove to be 

the load balancer, the Hadoop distributes the data across 

the nodes in a cluster based on available disk spaces. In 

case of homogenous environment, the computing and 

disk capacity are identical in all the nodes. However, in 

case of heterogeneous environment, the nodes are not 

identical. Nodes differ in the computing capacity and 

disk capacity. So in this case some of the tasks may take 

unusually more time to complete than the tasks on the 

high performing nodes. These high performance nodes 

can complete processing data faster than low performing 

nodes. This causes the imbalance in the processing of 

data and thus the entire job is delayed by the slowest 

running task. This slowest running task which delays the 

execution of the entire job is known as the straggler 

[12]. There can be various reasons for a straggler to 

occur. Straggler can occur because of many external and 

internal factors. In case of heterogeneous environment, 

where the straggler occurs just because of the difference 

in the disk and the computing capacity, techniques like 

speculative execution can be used to overcome the 

issues. However, in case of the homogenous 
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environments the issue of the straggler cannot be 

resolved by means of the techniques. One of the reasons 

for a straggler in the homogenous environment can be a 

data skew which cannot be resolved by simply 

transferring the task to the other machine. There is an 

increased demand for the user-defined operations (UDO) 

arising from the complex and advanced analytics of the 

data. 

 

II. METHODS AND MATERIAL 

 

1. Hadoop Distributed File System  

HDFS is an open source implementation of the google 

file system (GFS). HDFS is designed to store large files 

and all these files are stored on the clusters of 

commodity hardware [9]. The files that are meant to be 

Stored in the HDFS are of hundreds of megabytes, 

gigabytes or terabytes in size. It can be a petabyte of a 

data as well. HDFS does not require any expensive or 

highly reliable hardware, but it just requires the 

commodity hardware which is the hardware that is 

commonly available. 

 

1.1 HDFS Architecture 

 
The architecture of the HDFS consists of the specified 

nodes which are [6], [7], and [9] Name Node and Data 

Node and various daemon processes like Job tracker and 

Task tracker. The Name Node is a node which does not 

store any actual data but it stores the Meta data 

information about the data like number of the blocks, on 

which rack and in which Data Node the particular data 

block is stored in. It also stores the information about the 

file system directory tree. The Data Node is the node 

which stores the actual data. The Name Node is the 

single point of failure and it is also considered as the 

center piece of the HDFS. The Name Node is the master 

node. Whenever any client application wants to 

add/delete/move/copy any data from a file in HDFS, it 

has to contact the Name Node directly. Name Node has 

a disadvantage that it is a single point of failure and if it 

fails it is as if whole system fails. However, the newer 

versions of Hadoop have a secondary Name Node on the 

separate machine. This keeps track of images of the 

primary Name Node and helps in case of a failure. The 

data node communicates with the Name Node by 

sending the heart beat messages after every 3 seconds. If 

the Data Node does not communicate with the Name 

Node for a specified amount of time, it is considered to 

be dead and the replication of the data blocks on that 

data node is performed on the other working Data Node. 

Job tracker is a daemon process whose task is to submit 

and track the MapReduce jobs in Hadoop. It submits the 

job to the job tracker. Task tracker is a daemon process 

that runs the tasks and also reports the status of the task 

to the job tracker. Thus the task tracker performs the 

tasks of the map and reduces. Task tracker runs on the 

Data Node. The concept of blocks is also in the HDFS. 

The size of the blocks in the HDFS is a larger unit of 

64MB by default. The larger block size in the HDFS is 

used to minimize the costs of seeks. Thus it takes more 

time to transfer the data from the disk than the time to 

seek to the start of the block. Consider the transfer rate 

of the 100MB/s and a seek time of 10ms. To make the 

seek time 1% of the transfer time, the block size should 

be around 100MB. Thus the default size of the block is 

64 MB [3] but in some cases the block size is kept as 

128. 

 

 

Figure 1. Block diagram of HDFS architecture 

1.2 Main features of HDFS 

 

 Quick recovery: The architecture of the HDFS is 

built in such a way that there is a quick and 

automatic recovery when a fault is detected. 

HDFS consists of the large number of nodes and 

each node may store only a part of the file. Some 

nodes are non-functional and carry out the tasks 

of fault detection and reporting. 

 Access to data sets: In HDFS the main focus is 

on the high throughput of the data access. 

Applications that are developed to run on HDFS 

are not general purpose applications. They do not 

run on general purpose file system. Thus they 
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need streaming type of access to the data sets 

stored in HDFS. HDFS provides a streaming type 

of data access to the applications designed to run 

on it. 

 Support for large files: The size of the file in 

HDFS ranges from the gigabytes to terabytes. 

HDFS provides a full support to such large file. It 

also provides high bandwidth to access such large 

files. 

 Portability: HDFS has been designed in such a 

way that it can be used in any platform. Thus we 

can make use of platform of our choice. 

 Moving just the computation than moving the 

data: When the size of the file is huge, it is 

efficient to move the computation near the data 

area other than moving data to the computation 

area. This saves a lot of bandwidth and also 

minimizes the network congestion. HDFS 

provides a full support to the applications to 

move the computation closer the area where data 

is located. This simplifies the operations in 

HDFS. 

 

1.3 Benefits of block level abstraction in HDFS 

 We can have a larger file in the network than any 

single disk and the blocks of the file can be stored 

in any disks in the cluster. 

 Replication is done on these blocks thus the issues 

of fault tolerance and availability are easily met. 

Here each block is replicated at least 3 times on 

the separate physical machine thus providing 

protection against machine failure and data 

corruption. 

 The storage management is simplified by using 

the block level abstraction. By this way, it 

becomes very easy to calculate how much number 

of blocks can be stored on a particular disk and 

which block is on which disk. 

 

2. Mapreduce Programming Model 

 

It is considered as the heart of the Hadoop. MapReduce 

is an inherently parallel data processing programming 

model. There are various frameworks like the google 

MapReduce, Microsoft Dryad and Apache’s Hadoop 

which support MapReduce programming model [12]. 

Among all these, the Apache’s Hadoop is an open 

source. The MapReduce programs run by the Hadoop 

can be written in various languages like java, python, 

ruby and c++. All these MapReduce programs are data- 

intensive in nature and process very large data sets in a 

parallel fashion. 

2.1 Data processing in MapReduce: 

 

The working of MapReduce is based on these two 

phases. Map phase consists of the Map function and 

Reduce phase consists of the Reduce function [9], [10]. 

The first phase is the map phase which takes the raw 

data such as the text file as the input. The input is 

divided into the several parts known as splits and each 

split is fed to the separate map task. The size of the split 

is same as the size of the data block on the HDFS. Map 

task transforms the input data into the (key, value) pairs 

which is also known as the intermediate data [1], [2]. 

The map output is then fed to a combiner functions 

which is a user defined function. The combiner function 

output serves as the input to the reduce tasks. The 

combiner functions help to dispatch the (key, value) 

pairs that share the same key to the same partition. The 

partitions are decided by a default petitioner such as 

hash partitioned or some user defined petitioners. The 

locations about these partitions are sent to the Name 

Node. The Name Node then assigns a reduce tasks to the 

nodes and also passes the information about these 

partitions to the hose nodes. Thus the reduce nodes 

communicates with those partitions and are fed by (key, 

value) pairs present in those partitions. Thus the reduce 

task is performed which processes and simplifies the 

intermediate data. The reducer output is stored Directly 

on the HDFS while the mapper output is stored on the 

local file system. 

Hadoop provides the data locality optimization which 

helps to run a map task on the node where the input 

data resides on the HDFS. The MapReduce always 

splits the input data for parallel process. Each split is 

smaller as compared to whole file and thus each split 

takes less time to get processed. So when we process 

the large number of splits in parallel, the processing is 

better load- balanced. Hence, a faster machine will be 

able to process more splits over the course of the job 

than a slower machine. The splits must not be too small 

otherwise we may face an overhead of managing the 

splits. In most cases, the size of splits is same as size of 

HDFS block (64MB) [8], [11]. If there is a single 

reduce task, the output from all the map tasks is fed to 

that single reduce task. Thus there is no data locality 

optimization in reduce tasks. Here the map outputs 

have to be transferred across the network to the node 

where the reduce task is carried out. To guarantee the 

reliability, the reduce outputs are stored in HDFS and 
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are replicated across the nodes with one replica on the 

local node. BUT when there are multiple reducers, a 

partitioning function is needed to partition the map 

outputs into different partitions. Each partition gets the 

(key, value) pairs with same keys. Thus the number of 

partitions is equal to the number of different keys. 

 

 

Figure 2. Working process of MapReduce 

2.2 Stragglers in MapReduce 

 

As discussed earlier, the straggler is the slowest running 

task which delays the execution of entire job [12]. 

Stragglers are caused by various factors. 

It is very easy to overcome the straggler caused by the 

external factors. The commonly used method is called as 

the speculative execution. If the machine is performing 

slowly, or if a machine fails or if there is any faulty 

hardware in the machine, we can overcome it by simply 

Shifting the workload to some other machine which is 

performing well.  

 

Figure 3. Causes of Straggler 

In this way we can easily overcome the straggler issue. 

However, the speculative execution cannot be used 

when the straggler is caused by the internal factors of the 

data like the physical properties of data (height of 

persons, weight of persons), the speculative execution 

cannot be used because shifting the work load to other 

machine does not change the properties of the data and 

thus cannot overcome the straggler issue. This straggler 

caused by this issue is known as the data skew. Data 

skew can occur in both the phases of the MapReduce. 

When the data skew occurs in the Map phase, it can be 

easily mitigated by splitting the map tasks. The more 

complex data, that takes time and is difficult to process, 

is responsible for the data skew on the Map phase. The 

data skew on the map phase is rarely observed. The data 

skew on the reduce side is very difficult to overcome 

and is a challenging problem. A number of data-

intensive applications like the data mining and web 

indexing applications as well as the scientific data-

intensive applications have witnessed the same data 

skew problems. 

2.3 Types of data skew in MapReduce applications 

2.3.1 Map side data skew 

There are three causes of data skew on the map side [4], 

[5]: 

 Slow performing cup: The map tasks take the data 

and transform it into the (key, value) pairs. Each 

map task is given an equal amount of data so the 

focus here is on the amount of data to be processed 

and not on the time to process the data. Some of the 

machines which do not perform well take 

significantly large amount of time to process data 

than the one which perform well, thus causing the 

task to lag behind. 

 Complex map tasks: Each map task is assigned a 

data set of same size. However, some of the map 

tasks are so complex that they require different 

Processing and more time than other map tasks. This 

leads to a data skew on the map side. 

 Varying data distribution: The distribution of the 

input data to the map task may vary significantly. In 

some cases, the map task depends on the CPU 

intensive algorithms. Thus the runtime of such 

algorithms depend directly on the distribution of the 

input data. This leads to data- skew on the map side. 

 
2.3.2 Reduce Side Data Skew 

 
The various causes of the data skew on the 

reduce side are [5]: 

 Skew caused by partitioning: partitioning is the 

division of the intermediate data in such a way that 

the (key, value) pairs with the same key are placed 

in one partition which is fed into the same reducer. 

The default partitioned used is the hash- partitioned 
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or some other user defined partitioned can also be 

used. However, even after evenly distribution of the 

data to the reducers by means of the partitioning 

functions, a reduce-side skew can still occur. 

Consider a scenario, when the partitioning function 

distributes the (key, value) pairs perfectly across 

the reducers, some reducers may still get more data 

because the (key, value) pairs that are assigned to it 

contain more values than others. The partitioning 

logic must not rely on the values computed during 

the map task otherwise it causes a skew on the 

reduce side. 

 Larger clusters: This type of reduce side skew 

caused by the complex map task in the map side. 

The reduce tasks process the data in the form of 

(key, value) pairs. Some of the reducers may get a 

single larger cluster and other reducers may get 

smaller clusters, giving rise to a data skew on the 

reduce side. In order to overcome this type of data 

skew, it should be able to split the larger cluster 

into smaller clusters and then distribute these data 

clusters evenly across the reducers to avoid the data 

skew. 

 

2.4 Existing solutions to DataSkew 

 

There is an increased demand for user defined 

operations (UDO) for advanced analytics of large data 

sets. MapReduce provides enough supports writing 

UDO’s and using them for massive processing of large 

data sets. The user just has to write the Map and Reduce 

functions, API’s for writing UDO’s are provided by 

MapReduce. Skew is a known problem that occurs 

either in the Map phase or in the Reduce phase and it is 

related to parallel database management systems and 

adaptive or stream processing systems. One solution to 

mitigate skew is the implementation of skew-resistant 

operators. There is a Disadvantage in this approach that 

it imposes an extra burden on the operator writer. It only 

applies to operations that satisfy some specific 

properties. Another technique involves dividing the 

work into smaller partitions and transferring these 

partitions to different machines when needed. Such a 

strategy imposes significant overhead due to either task 

migration or extra task scheduling. 

SkewTune is another technique for handling skew in 

parallel data processing in MapReduce [13]. SkewTune 

is designed for MapReduce type programming model. 

Two properties of the MapReduce model on which the 

skew Tune relies are: 

 MapReduce buffers the output of one operation 

before it is passed for the next operation. 

 MapReduce has an operator decoupling, where each 

operator processes data independently. 

 

SkewTune helps in mitigating skew and does not impact 

the fault-tolerance and scalability of MapReduce. Two 

very common types of skew are mitigated by SkewTune. 

Skew which is caused by varying or uneven distribution 

of data to partitions and skew which is caused by some 

larger data sets that take longer time to process than 

others. 

2.4.1 Some key features of SkewTune are: 

 

 SkewTune is compatible with MapReduce 

programmers. There is no need to change even a 

single line of the code. 

 SkewTune guarantees that the output of any 

operation consists of the same number of partitions 

and also preserves the total ordering of the data in 

those partitions. 

 When a skew arises the SkewTune reduces the 

processing times by factor of 4 and also adds a very 

low overhead when there is no skew 

 

2.4.2 Working of SkewTune: 

 

The working principle of the SkewTune [13] depends on 

re-allocation of the parts of straggler to the slots which 

are fast working or which have already completed its 

task. Consider the following figure. 

Here, the job completion time of the entire job is 

decided by the slowest running task (straggler) which is 

task T2 in this case [13]. First the SkewTune detects the 

straggler and tries to mitigate it. It re-partitions the task 

T2 in such a way that it allocates the partitions to every 

slot available. Once the slot becomes available, it starts 

running part of the T2 task (straggler) which was 

allocated to it as shown in the figure B. 

 

Figure 4. Data Skew caused due to straggler (without 

skew tune) 
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Figure 5. Mitigation of the straggler using SkewTune 

 

Here the task T2 is re-partitioned in to three tasks (T2a, 

T2b, and T2c). The task T1 completes before every task, 

so it gets the T2b part of the T2 and Task T3 completes 

after Task T1 finishes so it gets the T2c part of the task 

T2. In this way every task finishes at around the same 

time. 

Another already existing technique for mitigating the 

reduce side skew is known as LIBRA (light weight 

implementation of the balanced range assignment) [12]. 

It uses an efficient technique to balance the work load 

among reduce tasks by splitting the larger data sets. 

LIBRA can also balance the work load in case of 

heterogeneous environment with no data skew. In order 

to solve the data skew problems, LIBRA makes use of 

the new sampling method which integrates a small 

percentage of the sample tasks into the normal map 

tasks. These sampling tasks are given a preference over 

the normal map tasks and they collect the statistics about 

the distribution of the input data. Sampling tasks 

transmit information about the input distribution to the 

master node. The master then upon receiving sample 

information from different sample tasks derives an 

estimate about the data distribution. Based on this 

sample information, the master makes decision about 

partitioning and sends this partitioning information to 

worker nodes. Thus it becomes easy for the worker 

nodes to partition the intermediate data without any 

extra overhead.  There   are   various   sampling methods 

like Random sampler, interval sampler, and split 

sampler. But none of these could be used because we 

cannot achieve good approximation about the 

distribution of input data. LIBRA       uses       its       

own       sampling      method. 

 

 

 

2.5 Large cluster splitting in LIBRA to mitigate 

reduce side-skew 

 

In a MapReduce framework, each cluster is processed 

by a different reducer. The number of keys is equal to 

the number of clusters as each cluster has different key. 

So if the cluster is larger than other clusters, the reducer 

it is allocated to takes longer time than other reducers 

[12] [3]. This leads to data skew on the reduce side. 

Consider key1, key2, key3 are three keys associated 

with the intermediate data with the values as 100, 10, 10 

respectively. When we partition them into two reducers, 

one of the reducer gets key with value 100 and other 

reducer gets two keys each having value 10. Thus the 

reducer 1 gets more data to be processed than the 

reducer 2, leading to data skew. To mitigate this LIBRA 

provides the larger cluster splitting technique. Using this 

technique, we can split the larger cluster in such a way 

that 60% of the cluster with key1 is allocated to reducer  

1 and the rest 40% is allocated to reducer 2. Thus it 

balances the load among the reducers and overcomes the 

data skew issue as shown in figure below. 

 

Figure 6. Large cluster split to mitigate reduce-side 

skew 

III. CONCLUSION 

 
To improve the data processing performance in 

MapReduce, it is important to mitigate the data skew 

caused in any phase of MapReduce (Map phase or 

Reduce phase). This paper is a survey of the already 

existing technique for mitigating the data skew in 

MapReduce applications. Skew Tune is one of the 

techniques which does not require any special input 

from the user instead it observes the complete execution 

of the job and automatically re-partitions the UN 

processed data among many tasks as they become 

available. It maintains the total ordering and partitioning 
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decisions on the input data. The performance is 

increased 4 times on a normal MapReduce jobs. 

The other technique used is known as LIBRA. LIBRA is 

mostly used for mitigating the reduce-side skew. It 

supports the splitting of the large data cluster so that 

there is no imbalance in the data allocation to reducers. 

There is a minimal and negligible overhead caused by 

the sampling method used in LIBRA. Here sample and 

map operations are combined and these operations take 

the same time as the normal map operations take.  

LIBRA increases the reduce side job execution time by 

partitioning the intermediate data more evenly. 
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