
IJSRSET1623136 | Received : 29 May 2016 | Accepted : 04 June 2016 | May-June 2016 [(2)3: 499-505]

© 2016 IJSRSET | Volume 2 | Issue 3 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

499

A Survey on Hadoop Storage Issues
Reetesh Rai, Shravan Kumar

 LNCT, Jabalpur, Madhya Pradesh, India

ABSTRACT

Hadoop is an open source implementation of Google’s MapReduce framework. MapReduce is the heart of the

apache’s Hadoop. The file system which is used by the Hadoop for storing the files is known as Hadoop distributed

file system (HDFS) which is an open source implementation of the google file system (GFS). Hadoop allows the

parallel processing of the large data sets by splitting the larger data set into smaller partitions and each partition is

fed to the separate task in the data node by the job tracker. The data node is the node where the data actually resides.

The task tracker resides on the data node and it runs the tasks and also reports the status of the tasks to the job

tracker. In a MapReduce, the slowest running task decides the job completion time. If the task is slower, it delays

the progress of the entire job. This slowest running task is known as the straggler. There can be many reasons for the

straggler to occur. One of the reasons is the data skew. This paper reviews the different types of the data skew,

where in MapReduce data skew can occur and what is the measure taken to overcome these problems.

Keywords: Mapreduce, HDFS, Straggler, Data Skew

I. INTRODUCTION

Apache’s Hadoop is an open source implementation of

the Google’s Map/reduce. World Wide Web has proved

to be the efficient platform for developing applications

which are data intensive in nature. As huge volumes of

the data are generated day by day, more number of

popular applications becomes data-intensive in nature.

This makes the data mining and web indexing

applications to access the largely expanding data sets

ranging from gigabytes to several tear or peat bytes. By

the help of the MapReduce model, the google processes

the 20 peat bytes of the data per day in a parallel

Fashion. The performance and the scalability of the

MapReduce are increased because in a MapReduce

model the large data set is split into many smaller

partitions and the job is then partitioned into numerous

smaller tasks. All these smaller tasks run on the multiple

different nodes in a cluster. For example, YAHOO

makes use of a cluster consisting of the 10,000 nodes to

process.

Hundreds of tear bytes of data generated. Facebook

generates about 15 TB of data per day and it is also

processed by the Hadoop. Websites like, the amazon

also makes use of the Hadoop to process huge volumes

of the data on daily basis. Scientific applications like the

seismic simulation and NLP also makes use of the

Hadoop to the fullest. In a MapReduce, data locality

determines the MapReduce performance. To prove to be

the load balancer, the Hadoop distributes the data across

the nodes in a cluster based on available disk spaces. In

case of homogenous environment, the computing and

disk capacity are identical in all the nodes. However, in

case of heterogeneous environment, the nodes are not

identical. Nodes differ in the computing capacity and

disk capacity. So in this case some of the tasks may take

unusually more time to complete than the tasks on the

high performing nodes. These high performance nodes

can complete processing data faster than low performing

nodes. This causes the imbalance in the processing of

data and thus the entire job is delayed by the slowest

running task. This slowest running task which delays the

execution of the entire job is known as the straggler

[12]. There can be various reasons for a straggler to

occur. Straggler can occur because of many external and

internal factors. In case of heterogeneous environment,

where the straggler occurs just because of the difference

in the disk and the computing capacity, techniques like

speculative execution can be used to overcome the

issues. However, in case of the homogenous

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

500

environments the issue of the straggler cannot be

resolved by means of the techniques. One of the reasons

for a straggler in the homogenous environment can be a

data skew which cannot be resolved by simply

transferring the task to the other machine. There is an

increased demand for the user-defined operations (UDO)

arising from the complex and advanced analytics of the

data.

II. METHODS AND MATERIAL

1. Hadoop Distributed File System

HDFS is an open source implementation of the google

file system (GFS). HDFS is designed to store large files

and all these files are stored on the clusters of

commodity hardware [9]. The files that are meant to be

Stored in the HDFS are of hundreds of megabytes,

gigabytes or terabytes in size. It can be a petabyte of a

data as well. HDFS does not require any expensive or

highly reliable hardware, but it just requires the

commodity hardware which is the hardware that is

commonly available.

1.1 HDFS Architecture

The architecture of the HDFS consists of the specified

nodes which are [6], [7], and [9] Name Node and Data

Node and various daemon processes like Job tracker and

Task tracker. The Name Node is a node which does not

store any actual data but it stores the Meta data

information about the data like number of the blocks, on

which rack and in which Data Node the particular data

block is stored in. It also stores the information about the

file system directory tree. The Data Node is the node

which stores the actual data. The Name Node is the

single point of failure and it is also considered as the

center piece of the HDFS. The Name Node is the master

node. Whenever any client application wants to

add/delete/move/copy any data from a file in HDFS, it

has to contact the Name Node directly. Name Node has

a disadvantage that it is a single point of failure and if it

fails it is as if whole system fails. However, the newer

versions of Hadoop have a secondary Name Node on the

separate machine. This keeps track of images of the

primary Name Node and helps in case of a failure. The

data node communicates with the Name Node by

sending the heart beat messages after every 3 seconds. If

the Data Node does not communicate with the Name

Node for a specified amount of time, it is considered to

be dead and the replication of the data blocks on that

data node is performed on the other working Data Node.

Job tracker is a daemon process whose task is to submit

and track the MapReduce jobs in Hadoop. It submits the

job to the job tracker. Task tracker is a daemon process

that runs the tasks and also reports the status of the task

to the job tracker. Thus the task tracker performs the

tasks of the map and reduces. Task tracker runs on the

Data Node. The concept of blocks is also in the HDFS.

The size of the blocks in the HDFS is a larger unit of

64MB by default. The larger block size in the HDFS is

used to minimize the costs of seeks. Thus it takes more

time to transfer the data from the disk than the time to

seek to the start of the block. Consider the transfer rate

of the 100MB/s and a seek time of 10ms. To make the

seek time 1% of the transfer time, the block size should

be around 100MB. Thus the default size of the block is

64 MB [3] but in some cases the block size is kept as

128.

Figure 1. Block diagram of HDFS architecture

1.2 Main features of HDFS

 Quick recovery: The architecture of the HDFS is

built in such a way that there is a quick and

automatic recovery when a fault is detected.

HDFS consists of the large number of nodes and

each node may store only a part of the file. Some

nodes are non-functional and carry out the tasks

of fault detection and reporting.

 Access to data sets: In HDFS the main focus is

on the high throughput of the data access.

Applications that are developed to run on HDFS

are not general purpose applications. They do not

run on general purpose file system. Thus they

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

501

need streaming type of access to the data sets

stored in HDFS. HDFS provides a streaming type

of data access to the applications designed to run

on it.

 Support for large files: The size of the file in

HDFS ranges from the gigabytes to terabytes.

HDFS provides a full support to such large file. It

also provides high bandwidth to access such large

files.

 Portability: HDFS has been designed in such a

way that it can be used in any platform. Thus we

can make use of platform of our choice.

 Moving just the computation than moving the

data: When the size of the file is huge, it is

efficient to move the computation near the data

area other than moving data to the computation

area. This saves a lot of bandwidth and also

minimizes the network congestion. HDFS

provides a full support to the applications to

move the computation closer the area where data

is located. This simplifies the operations in

HDFS.

1.3 Benefits of block level abstraction in HDFS

 We can have a larger file in the network than any

single disk and the blocks of the file can be stored

in any disks in the cluster.

 Replication is done on these blocks thus the issues

of fault tolerance and availability are easily met.

Here each block is replicated at least 3 times on

the separate physical machine thus providing

protection against machine failure and data

corruption.

 The storage management is simplified by using

the block level abstraction. By this way, it

becomes very easy to calculate how much number

of blocks can be stored on a particular disk and

which block is on which disk.

2. Mapreduce Programming Model

It is considered as the heart of the Hadoop. MapReduce

is an inherently parallel data processing programming

model. There are various frameworks like the google

MapReduce, Microsoft Dryad and Apache’s Hadoop

which support MapReduce programming model [12].

Among all these, the Apache’s Hadoop is an open

source. The MapReduce programs run by the Hadoop

can be written in various languages like java, python,

ruby and c++. All these MapReduce programs are data-

intensive in nature and process very large data sets in a

parallel fashion.

2.1 Data processing in MapReduce:

The working of MapReduce is based on these two

phases. Map phase consists of the Map function and

Reduce phase consists of the Reduce function [9], [10].

The first phase is the map phase which takes the raw

data such as the text file as the input. The input is

divided into the several parts known as splits and each

split is fed to the separate map task. The size of the split

is same as the size of the data block on the HDFS. Map

task transforms the input data into the (key, value) pairs

which is also known as the intermediate data [1], [2].

The map output is then fed to a combiner functions

which is a user defined function. The combiner function

output serves as the input to the reduce tasks. The

combiner functions help to dispatch the (key, value)

pairs that share the same key to the same partition. The

partitions are decided by a default petitioner such as

hash partitioned or some user defined petitioners. The

locations about these partitions are sent to the Name

Node. The Name Node then assigns a reduce tasks to the

nodes and also passes the information about these

partitions to the hose nodes. Thus the reduce nodes

communicates with those partitions and are fed by (key,

value) pairs present in those partitions. Thus the reduce

task is performed which processes and simplifies the

intermediate data. The reducer output is stored Directly

on the HDFS while the mapper output is stored on the

local file system.

Hadoop provides the data locality optimization which

helps to run a map task on the node where the input

data resides on the HDFS. The MapReduce always

splits the input data for parallel process. Each split is

smaller as compared to whole file and thus each split

takes less time to get processed. So when we process

the large number of splits in parallel, the processing is

better load- balanced. Hence, a faster machine will be

able to process more splits over the course of the job

than a slower machine. The splits must not be too small

otherwise we may face an overhead of managing the

splits. In most cases, the size of splits is same as size of

HDFS block (64MB) [8], [11]. If there is a single

reduce task, the output from all the map tasks is fed to

that single reduce task. Thus there is no data locality

optimization in reduce tasks. Here the map outputs

have to be transferred across the network to the node

where the reduce task is carried out. To guarantee the

reliability, the reduce outputs are stored in HDFS and

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

502

are replicated across the nodes with one replica on the

local node. BUT when there are multiple reducers, a

partitioning function is needed to partition the map

outputs into different partitions. Each partition gets the

(key, value) pairs with same keys. Thus the number of

partitions is equal to the number of different keys.

Figure 2. Working process of MapReduce

2.2 Stragglers in MapReduce

As discussed earlier, the straggler is the slowest running

task which delays the execution of entire job [12].

Stragglers are caused by various factors.

It is very easy to overcome the straggler caused by the

external factors. The commonly used method is called as

the speculative execution. If the machine is performing

slowly, or if a machine fails or if there is any faulty

hardware in the machine, we can overcome it by simply

Shifting the workload to some other machine which is

performing well.

Figure 3. Causes of Straggler

In this way we can easily overcome the straggler issue.

However, the speculative execution cannot be used

when the straggler is caused by the internal factors of the

data like the physical properties of data (height of

persons, weight of persons), the speculative execution

cannot be used because shifting the work load to other

machine does not change the properties of the data and

thus cannot overcome the straggler issue. This straggler

caused by this issue is known as the data skew. Data

skew can occur in both the phases of the MapReduce.

When the data skew occurs in the Map phase, it can be

easily mitigated by splitting the map tasks. The more

complex data, that takes time and is difficult to process,

is responsible for the data skew on the Map phase. The

data skew on the map phase is rarely observed. The data

skew on the reduce side is very difficult to overcome

and is a challenging problem. A number of data-

intensive applications like the data mining and web

indexing applications as well as the scientific data-

intensive applications have witnessed the same data

skew problems.

2.3 Types of data skew in MapReduce applications

2.3.1 Map side data skew

There are three causes of data skew on the map side [4],

[5]:

 Slow performing cup: The map tasks take the data

and transform it into the (key, value) pairs. Each

map task is given an equal amount of data so the

focus here is on the amount of data to be processed

and not on the time to process the data. Some of the

machines which do not perform well take

significantly large amount of time to process data

than the one which perform well, thus causing the

task to lag behind.

 Complex map tasks: Each map task is assigned a

data set of same size. However, some of the map

tasks are so complex that they require different

Processing and more time than other map tasks. This

leads to a data skew on the map side.

 Varying data distribution: The distribution of the

input data to the map task may vary significantly. In

some cases, the map task depends on the CPU

intensive algorithms. Thus the runtime of such

algorithms depend directly on the distribution of the

input data. This leads to data- skew on the map side.

2.3.2 Reduce Side Data Skew

The various causes of the data skew on the

reduce side are [5]:

 Skew caused by partitioning: partitioning is the

division of the intermediate data in such a way that

the (key, value) pairs with the same key are placed

in one partition which is fed into the same reducer.

The default partitioned used is the hash- partitioned

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

503

or some other user defined partitioned can also be

used. However, even after evenly distribution of the

data to the reducers by means of the partitioning

functions, a reduce-side skew can still occur.

Consider a scenario, when the partitioning function

distributes the (key, value) pairs perfectly across

the reducers, some reducers may still get more data

because the (key, value) pairs that are assigned to it

contain more values than others. The partitioning

logic must not rely on the values computed during

the map task otherwise it causes a skew on the

reduce side.

 Larger clusters: This type of reduce side skew

caused by the complex map task in the map side.

The reduce tasks process the data in the form of

(key, value) pairs. Some of the reducers may get a

single larger cluster and other reducers may get

smaller clusters, giving rise to a data skew on the

reduce side. In order to overcome this type of data

skew, it should be able to split the larger cluster

into smaller clusters and then distribute these data

clusters evenly across the reducers to avoid the data

skew.

2.4 Existing solutions to DataSkew

There is an increased demand for user defined

operations (UDO) for advanced analytics of large data

sets. MapReduce provides enough supports writing

UDO’s and using them for massive processing of large

data sets. The user just has to write the Map and Reduce

functions, API’s for writing UDO’s are provided by

MapReduce. Skew is a known problem that occurs

either in the Map phase or in the Reduce phase and it is

related to parallel database management systems and

adaptive or stream processing systems. One solution to

mitigate skew is the implementation of skew-resistant

operators. There is a Disadvantage in this approach that

it imposes an extra burden on the operator writer. It only

applies to operations that satisfy some specific

properties. Another technique involves dividing the

work into smaller partitions and transferring these

partitions to different machines when needed. Such a

strategy imposes significant overhead due to either task

migration or extra task scheduling.

SkewTune is another technique for handling skew in

parallel data processing in MapReduce [13]. SkewTune

is designed for MapReduce type programming model.

Two properties of the MapReduce model on which the

skew Tune relies are:

 MapReduce buffers the output of one operation

before it is passed for the next operation.

 MapReduce has an operator decoupling, where each

operator processes data independently.

SkewTune helps in mitigating skew and does not impact

the fault-tolerance and scalability of MapReduce. Two

very common types of skew are mitigated by SkewTune.

Skew which is caused by varying or uneven distribution

of data to partitions and skew which is caused by some

larger data sets that take longer time to process than

others.

2.4.1 Some key features of SkewTune are:

 SkewTune is compatible with MapReduce

programmers. There is no need to change even a

single line of the code.

 SkewTune guarantees that the output of any

operation consists of the same number of partitions

and also preserves the total ordering of the data in

those partitions.

 When a skew arises the SkewTune reduces the

processing times by factor of 4 and also adds a very

low overhead when there is no skew

2.4.2 Working of SkewTune:

The working principle of the SkewTune [13] depends on

re-allocation of the parts of straggler to the slots which

are fast working or which have already completed its

task. Consider the following figure.

Here, the job completion time of the entire job is

decided by the slowest running task (straggler) which is

task T2 in this case [13]. First the SkewTune detects the

straggler and tries to mitigate it. It re-partitions the task

T2 in such a way that it allocates the partitions to every

slot available. Once the slot becomes available, it starts

running part of the T2 task (straggler) which was

allocated to it as shown in the figure B.

Figure 4. Data Skew caused due to straggler (without

skew tune)

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

504

Figure 5. Mitigation of the straggler using SkewTune

Here the task T2 is re-partitioned in to three tasks (T2a,

T2b, and T2c). The task T1 completes before every task,

so it gets the T2b part of the T2 and Task T3 completes

after Task T1 finishes so it gets the T2c part of the task

T2. In this way every task finishes at around the same

time.

Another already existing technique for mitigating the

reduce side skew is known as LIBRA (light weight

implementation of the balanced range assignment) [12].

It uses an efficient technique to balance the work load

among reduce tasks by splitting the larger data sets.

LIBRA can also balance the work load in case of

heterogeneous environment with no data skew. In order

to solve the data skew problems, LIBRA makes use of

the new sampling method which integrates a small

percentage of the sample tasks into the normal map

tasks. These sampling tasks are given a preference over

the normal map tasks and they collect the statistics about

the distribution of the input data. Sampling tasks

transmit information about the input distribution to the

master node. The master then upon receiving sample

information from different sample tasks derives an

estimate about the data distribution. Based on this

sample information, the master makes decision about

partitioning and sends this partitioning information to

worker nodes. Thus it becomes easy for the worker

nodes to partition the intermediate data without any

extra overhead. There are various sampling methods

like Random sampler, interval sampler, and split

sampler. But none of these could be used because we

cannot achieve good approximation about the

distribution of input data. LIBRA uses its

own sampling method.

2.5 Large cluster splitting in LIBRA to mitigate

reduce side-skew

In a MapReduce framework, each cluster is processed

by a different reducer. The number of keys is equal to

the number of clusters as each cluster has different key.

So if the cluster is larger than other clusters, the reducer

it is allocated to takes longer time than other reducers

[12] [3]. This leads to data skew on the reduce side.

Consider key1, key2, key3 are three keys associated

with the intermediate data with the values as 100, 10, 10

respectively. When we partition them into two reducers,

one of the reducer gets key with value 100 and other

reducer gets two keys each having value 10. Thus the

reducer 1 gets more data to be processed than the

reducer 2, leading to data skew. To mitigate this LIBRA

provides the larger cluster splitting technique. Using this

technique, we can split the larger cluster in such a way

that 60% of the cluster with key1 is allocated to reducer

1 and the rest 40% is allocated to reducer 2. Thus it

balances the load among the reducers and overcomes the

data skew issue as shown in figure below.

Figure 6. Large cluster split to mitigate reduce-side

skew

III. CONCLUSION

To improve the data processing performance in

MapReduce, it is important to mitigate the data skew

caused in any phase of MapReduce (Map phase or

Reduce phase). This paper is a survey of the already

existing technique for mitigating the data skew in

MapReduce applications. Skew Tune is one of the

techniques which does not require any special input

from the user instead it observes the complete execution

of the job and automatically re-partitions the UN

processed data among many tasks as they become

available. It maintains the total ordering and partitioning

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

505

decisions on the input data. The performance is

increased 4 times on a normal MapReduce jobs.

The other technique used is known as LIBRA. LIBRA is

mostly used for mitigating the reduce-side skew. It

supports the splitting of the large data cluster so that

there is no imbalance in the data allocation to reducers.

There is a minimal and negligible overhead caused by

the sampling method used in LIBRA. Here sample and

map operations are combined and these operations take

the same time as the normal map operations take.

LIBRA increases the reduce side job execution time by

partitioning the intermediate data more evenly.

IV. REFERENCES

[1] Joe B. Buck, Noah Watkins, Jeff Lefebvre, Leoni

Ioannides, Carlos Matzah, Neola Polyposis, Scott

Brandt, "SciHadoop: Array-based Query

Processing in Hadoop", UC Santa Cruz, Dept. of

Computer Science.

[2] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding,

Yun Tian,James Majors, Adam Manzanares, and

Xiao Qin, "Improving MapReduce Performance

through Data Placement in Heterogeneous

Hadoop Clusters", Department of Computer

Science and Software Engineering Auburn

University, Auburn, AL 36849-5347.

[3] Benjamin Gufler, Nikolaus Augsten2, Angelika

Reiser2 and Alfons Kempe "Handling data skew

in MapReduce", Technische Universit at

Munchen, Munchen, Germany 2Free University of

Bozen-Bolzano, Bolzano, Italy

[4] YongChul Kwon1, Kai Ren2, Magdalena

Balazinska1, and Bill Howe1, "Managing Skew in

Hadoop", 1University of Washington, 2Carnegie

Mellon University.

[5] YongChul Kwon, Magdalena Balazinska, Bill

Howe, "A Study of Skew in MapReduce

Applications", University of Washington, USA

[6] JinWoo Lee, SyKyoung Kim, "Study for

Performance Improvement of Parallel Process

According to Analysis of Hadoop", Computer

Engineering Hanbat National University Daejeon,

Korea

[7] Weijia Xu, Wei Luo, Nicholas Woodward,

"Analysis and Optimization of Data Import with

Hadoop", 2012 IEEE 26th International Parallel

and Distributed Processing Symposium

Workshops & PhD Forum.

[8] Da-Wei, Zhang, Fu-Quan, Sun,Xu Cheng and

Chao Liu, "Research on Hadoop-based Enterprise

File Cloud Storage System" Information

Technology and Business Management

Department Dalian Neusoft Institute of

Information Dalian, China

[9] AiLing Duan, "Research and Application of

Distributed Parallel Search Hadoop Algorithm",

2012 International Conference on Systems and

Informatics (ICSAI 2012).

[10] AiLing Duan , HaiFang Si , 1.School of

Information Science and Engineering, Henan

University of Technology, Zhengzhou,450001,

China, "Research and Practice of Distributed

Parallel Search Algorithm on

Hadoop_MapReduce" , 2012 International

Conference on Control Engineering and

Communication Technology

[11] Tom white, "Hadoop: the definitive guide.

[12] Qi Chen, Jinyu Yao, and Zhen Xiao, Senior

Member, IEEE, "LIBRA: Lightweight DataSkew

Mitigation in MapReduce" , IEEE

TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS.

[13] YongChul Kwon, Magdalena Balazinska, Bill

Howe, Jerome Rolia University of Washington,

HP Labs, "SkewTune in Action: Mitigating Skew

in MapReduce Applications".

