
IJSRSET1623148 | Received : 02 June  2016 | Accepted : 08 June 2016 | May-June 2016 [(2)3: 525-529]  

 

© 2016 IJSRSET | Volume 2 | Issue 3 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099 
Themed Section:  Engineering and Technology 

 

525 

 

An Improved FP-Tree Algorithm with Relationship Technique 

for Refined Result of Association Rule Mining  
Priyanka Saxena, Ruchi Jain 

TITECH, JABALPUR, Madhy Pradesh, India 

 
ABSTRACT 
 

Construction and development of classifier that works with more accuracy and performs efficiently for large 

database is one of the key tasks of data mining techniques. Secondly training dataset repeatedly produces massive 

amount of rules. It’s very tough to store, retrieve, prune, and sort a huge number of rules proficiently before 

applying to a classifier. In such situation FP is the best choice but problem with this approach is that it generates 

redundant FP Tree. A Frequent pattern tree (FP-tree) is type of prefix tree that allows the detection of recurrent 

(frequent) item set exclusive of the candidate item set generation. It is anticipated to recuperate the flaw of 

existing mining methods. FP – Trees pursues the divide and conquers tactic. In this thesis we have adapt the same 

idea for identifying frequent item set with large database. For this we have integrated a positive and negative rule 

mining concept with frequent pattern algorithm and correlation approach is used to refine the association rule and 

give a relevant association rules for our goal. Our method performs well and produces unique rules without 

ambiguity. 
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I. INTRODUCTION 

 

With the increase in Information Technology, the size of 

the databases created by the organizations due to the 

availability of low-cost storage and the evolution in the 

data capturing Technologies is also increasing,. These 

organization sectors include retail, petroleum, 

telecommunications, utilities, manufacturing, 

transportation, credit cards, insurance, banking and 

many others, extracting the valuable data, it necessary to 

explore the databases completely and efficiently. 

Knowledge discovery in databases (KDD) helps to 

identifying precious information in such huge databases. 

This valuable information can help the decision maker to 

make accurate future decisions. KDD applications 

deliver measurable benefits, including reduced cost of 

doing business, enhanced profitability, and improved 

quality of service. Therefore Knowledge Discovery in 

Databases has become one of the most active and 

exciting research areas in the database community. 

 

 

1.1. Data Mining 

 

This is the important part of KDD. Data mining 

generally involves four classes of task; classification, 

clustering, regression, and association rule learning. 

Data mining refers to discover knowledge in huge 

amounts of data. It is a scientific discipline that is 

concerned with analyzing observational data sets with 

the objective of finding unsuspected relationships and 

produces a summary of the data in novel ways that the 

owner can understand and use. Data mining as a field of 

study involves the merging of ideas from many domains 

rather than a pure discipline the four main disciplines 

[25], which are contributing to data mining include: 

 

Statistics: it can provide tools for measuring significance 

of the given data, estimating probabilities and many 

other tasks (e. g. linear regression). 

 

Machine learning: it provides algorithms for inducing 

knowledge from given data(e. g. SVM). 
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Data management and databases: since data mining 

deals with huge size of data, an efficient way of 

accessing and maintaining data is necessary. 

 

Artificial intelligence: it contributes to tasks involving 

knowledge encoding or search techniques (e. g. neural 

networks). 

 

1.2. Data Mining Applications 

 

Data mining has become an essential technology for 

businesses and researchers in many fields, the number 

and variety of applications has been growing gradually 

for several years and it is predicted that it will carry on 

to grow. A number of the business areas with an early 

embracing of DM into their processes are banking, 

insurance, retail and telecom. More lately it has been 

implemented in pharmaceutics, health, government and 

all sorts of e-businesses (Figure 1-1). 

 

One describes a scheme to generate a whole set of 

trading strategies that take into account application 

constraints, for example timing, current position and 

pricing [24]. The authors highlight the importance of 

developing a suitable back testing environment that 

enables the gathering of sufficient evidence to convince 

the end users that the system can be used in practice. 

They use an evolutionary computation approach that 

favors trading models with higher stability, which is 

essential for success in this application domain.  

 

Apriori algorithm is used as a recommendation engine in 

an E-commerce system. Based on each visitors purchase 

history the system recommends related, potentially 

interesting, and products. It is also used as basis for a 

CRM system as it allows the company itself to follow-

up on customer’s purchases and to recommend other 

products by e-mail [13]. 

 

A government application is proposed by [26]. The 

problem is connected to the management of the risk 

associated with social security clients in Australia. The 

problem is confirmed as a sequence mining task. The 

action ability of the model obtained is an essential 

concern of the authors. They concentrate on the difficult 

issue of performing an evaluation taking both technical 

and business interestingness into account. 

 
Figure 1. Data mining applications  

(http://www. kdnuggets. com) 

 

II. METHODS AND MATERIAL 

 

Related Work 

 

The first algorithm for mining all frequent itemsets and 

strong association rules was the AIS algorithm by [3]. 

Shortly after that, the algorithm was improved and 

renamed Apriori. Apriori algorithm is, the most classical 

and important algorithm for mining frequent itemsets. 

Apriori is used to find all frequent itemsets in a given 

database DB.The key idea of Apriori algorithm is to 

make multiple passes over the database. 

 

Direct Hashing and Pruning (DHP) : 

 

It is absorbed that reducing the candidate items from the 

database is one of the important task for increasing the 

efficiency. Thus a DHP technique was proposed [7] to 

reduce the number of candidates in the early passes for 

and thus the size of database. In this method, support is 

counted by mapping the items from the candidate list 

into the buckets which is divided according to support 

known as Hash table structure. As the new itemset is 

encountered if item exist earlier then increase the bucket 

count else insert into new bucket. Thus in the end the 

bucket whose support count is less the minimum support 

is removed from the candidate set. 

 

In this way it reduce the generation of candidate sets in 

the earlier stages but as the level increase the size of 
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bucket also increase thus difficult to manage hash table 

as well candidate set. 

 

Partitioning Algorithm: 

 

Partitioning algorithm [1] is based to find the frequent 

elements on the basis partitioning of database in n parts. 

It overcomes the memory problem for large database 

which do not fit into main memory because small parts 

of database easily fit into main memory. This algorithm 

divides into two passes. 

 

Sampling Algorithm: 

 

This algorithm [10] is used to overcome the limitation of 

I/O overhead by not considering the whole database for 

checking the frequency. It is just based in the idea to 

pick a random sample of itemset R from the database 

instead of whole database D. The sample is picked in 

such a way that whole sample is accommodated in the 

main memory. In this way we try to find the frequent 

elements for the sample only and there is chance to miss 

the global frequent elements in that sample therefore 

lower threshold support is used instead of actual 

minimum support to find the frequent elements local to 

sample. In the best case only one pass is needed to find 

all frequent elements if all the elements included in 

sample and if elements missed in sample then second 

pass are needed to find the itemsets missed in first pass 

or in sample [13]. 

 

Dynamic Itemset Counting (DIC): 

 

This algorithm [4] also used to reduce the number of 

database scan. It is based upon the downward disclosure 

property in which adds the candidate itemsets at 

different point of time during the scan. In this dynamic 

blocks are formed from the database marked by start 

points and unlike the previous techniques of Apriori it 

dynamically changes the sets of candidates during the 

database scan. Unlike the Apriori it cannot start the next 

level scan at the end of first level scan, it start the scan 

by starting label attached to each dynamic partition of 

candidate sets. 

 

 

 

 

 

 

III. RESULTS AND DISCUSSION 
 

PROPOSED WORK AND RESULTS 

 

Algorithm for FP-tree construction 

 

Input: A transaction database DB and a minimum 

support threshold ξ. 

 

Output: FP-tree, the frequent-pattern tree of DB. 

 

Method: The FP-tree is constructed as follows. 

 

1. Scan the transaction database DB once. Collect F, 

the set of frequent items, and the support of each 

frequent item. Sort F in support-descending order as 

FList, the list of frequent items. 

2. Create the root of an FP-tree, T , and label it as 

“null”. For each transaction Trans in DB do the 

following. 

Select the frequent items in Trans and sort them 

according to the order of FList. Let the sorted frequent-

item list in Trans be [p | P], where p is the first element 

and P is the remaining list. Call insert tree ([p | P], T). 

 

The function insert tree([p | P], T ) is performed as 

follows. If T has a child N such that N.item-name = 

p.item-name, then increment N’s count by 1; else create 

a new node N, with its count initialized to 1, its parent 

link linked to T , and its node-link linked to the nodes 

with the same item-name via the node-link structure. If P 

is nonempty, call insert tree (P, N) recursively. 

 

Then, the next step is to generate positive and negative 

class association rules. It firstly finds the rules contained 

in F which satisfy min_sup and min_conf threshold. 

Then, it will determined the rules whether belong to the 

set of positve class correlation rules P_AR or the set of 

negative class correlation rules N_AR. 

 

The algorithm of generating positive and negative class 

association rules is shown as follow: 

 

Algorithm for generating positive and negative class 

association rules 

 

Input: training dataset T, min_sup, min_conf 

Output: P_AR, N_AR 
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(I)P_AR=NULL, N_AR=NULL; 

(2)for (any frequent itemset X in F and Ci in C) 

{ 

if (sup(X→ci)>min_sup and conf(X→ ci)> min_conf) 

if( corr(X, ci > 1) 

{ 

P_AR= P_AR U {X→ - ci;}; 

} 

else if corr(X, ci <I 

{ 

N_AR= N_AR U {X→ - ci;}; 

} 

(3) returnP_AR and N_AR; 

 

In this algorithm, we use FP Growth method generates 

the set of frequent itemsets F, In F, there are some 

itemsets passing certain support and confidence 

thresholds. And the correlation between itemsets and 

class labels is used as an important criterion to judge 

whether or not the correlation rule is positve. Lastly, 

P_AR and N_AR are returned. 

 

For the artificial dataset which contains the maximal 

frequent itemset in large amount shows better result with 

new approach as shown in figure 2 then FP-tree and 

Apriori algorithm. In the artificial  dataset there are 

various transactions consider which occur repeatedly  in  

the  database  and  some  transactions  occur  greater  

than  the  minimum support. The itemset remains for 

mining frequent  itemset are mined with the help of 

second  procedure  whose  complexity  equals  to  the  

FP-Growth  algorithm  but  due  to procedure 1 the 

overall complexity reduce and become efficient. 

 

 
Figure 2.  Execution Time for Artificial dataset 

 

As it is clear from figure 3, the memory consumption for 

the Apriori algorithm is the highest at all level support 

because it produces candidate itemsets.  The memory 

consumption for FP-tree at higher support levels is 

approximately same as the new approach because as the 

support increase the probability of finding the maximal 

itemset whose repetition is greater than the minimum 

support is less thus its working become same as the FP-

Growth algorithm. 

 

 
Figure 3. The memory usage at various support levels 

on dataset 

 

IV. CONCLUSION 

 
In this paper, we considered the following factors for 

creating our new scheme, which are the time and the 

memory consumption, these factors, are affected by the 

approach for finding the frequent itemsets. Work has 

been done to develop an algorithm which is an 

improvement over Apriori and FP-tree with using an 

approach of improved Apriori and FP-Tree algorithm for 

a transactional database.  According  to  our  

observations,  the performances  of  the  algorithms  are  

strongly  depends  on  the  support  levels  and  the 

features of the data sets (the nature and the size of the 

data sets). Therefore we employed it in our scheme to 

guarantee the time saving and the memory in the case of 

sparse and dense data sets. It is found that for a 

transactional database where many transaction items are  

repeated  many  times  as  a  super  set  in  that  type  of  

database  maximal  Apriori (improvement over classical 

Apriori) is best suited for mining  frequent itemsets. The 

itemsets which are not included in maximal super set is 

treated by FP-tree for finding the remaining frequent 

itemsets. Thus this algorithm produces frequent itemsets 

completely. This approach doesn’t produce candidate 

itemsets and building FP-tree only for pruned database 
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that fit into  main memory easily. Thus it saves much 

time and space and considered as an efficient method as 

proved from the results. 
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