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ABSTRACT 
 

The Ethernet switch is a major building block for today’s enterprise networks and data centers. As network 

technologies congregate ahead a single Ethernet fabric,there is enduring pressure to increae the performance and 

efficiency of the switch while maintaining elasticity and a well-to-do position of packet processing features. The 

OpenFlow architecture aims to provide elasticity and programmable packet processing to meet these converging 

needs. Of the several ways to generate an OpenFlow switch, a popular preference is to create deep use of ternary 

content addressable memories (TCAMs). Regrettably, TCAMs can consume a significant amount of power and, 

when used to equal flows in an OpenFlow switch, put a hurdle on switch latency. In this paper, we propose 

enhancing an OpenFlow Ethernet switch with per-port packet prediction circuitry in order to simultaneously reduce 

latency and power consumption without sacrificing rich policy-based forwarding enabled by the OpenFlow 

architecture. Packet prediction exploits the sequential position network communications to predict the flow 

arrangement of arriving packets. When predictions are correct, latency can be reduced, and considerable power 

savings can be achieved from bypassing the full lookup process. IP and Transport networks are controlled and 

operated independently today, leading to significant Capex and Opex inefficiencies for the providers. We discuss a 

unified approach with OpenFlow, and present a recent demonstration of a unified control plane for OpenFlow 

enabled IP/Ethernet networks. Imitation studies using actual network traces point out that correct prediction rates of 

97% are achievable using only a small amount of prediction circuitry per port. OpenFlow is based on an Ethernet 

switch, with an internal flow-table, and a standardized interface to add and remove flow entries. Our goal is to 

encourage networking vendors to add OpenFlow to their switch products for deployment in college campus 

backbones and wiring closets. We believe that OpenFlow is a pragmatic compromise: on one hand, it allows 

researchers to run experiments on heterogeneous switches in a uniform way at line-rate and with high port-density; 

while on the other hand, vendors do not need to expose the internal workings of their switches. 

Keywords: Ethernet networks, packet switching, software, Transmission Control Protocol, Transport Layer 

Security, Media Access Controller, TCAM, Packet Prediction Circuitry, TCAMmustbe 

I. INTRODUCTION 

The OpenFlow enables remote controllers to determine 

the path of network packets through the network of 

switches. At least two controllers are recommended — a 

primary, and a secondary as backup. This separation of 

the control from the forwarding allows for more 

sophisticated traffic management than is feasible using 

access control lists (ACLs) and routing protocols. Also, 

OpenFlow allows switches from different suppliers — 

often each with their own proprietary interfaces and 

scripting languages — to be managed remotely using a 

single, open protocol. Its inventors consider OpenFlow 

an enabler of Software defined networking 

(SDN).OpenFlow allows remote administration of a 

switch's packet forwarding tables, by adding, modifying 

and removing packet matching rules and actions. This 

way, routing decisions can be made periodically or ad 

hoc by the controller and translated into rules and 

actions with a configurable lifespan, which are then 

deployed to a switch's flow table, leaving the actual 

forwarding of matched packets to the switch at wire 

speed for the duration of those rules. Packets which are 

unmatched by the switch can be forwarded to the 

controller. The controller can then decide to modify 

existing flow table rules on one or more switches or to 

deploy new rules, to prevent a structural flow of traffic 
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between switch and controller. It could even decide to 

forward the traffic itself, provided that it has told the 

switch to forward entire packets instead of just their 

header. The OpenFlow protocol is layered on top of the 

Transmission Control Protocol (TCP), and prescribes the 

use of Transport Layer Security (TLS). Controllers 

should listen on TCP port 6653 for switches that want to 

set up a connection. Earlier versions of the OpenFlow 

protocol unofficially used port 6633.Networks have 

become a critical part of business and institutions. A 

failure in a network could become a failure in business 

processes and the consequent money lost. Therefore 

network administrators have to ensure a perfect network 

running close to 100% of the time. But many times 

researchers need real environments in which they can 

test experimental network protocols and usually 

encounter opposition from network administrators who 

forbid them to test their experiments in production 

networks. Here is where it appears the term 

programmable networks and where OpenFlow 

technology can help to solve this problematic. 

OpenFlow technology allows network administrators to 

segment telecommunication networks programming the 

devices involved in the system. OpenFlow devices 

identify different traffic flows following rules pre-

configured by network managers.  This technology 

virtualizes network into flows in a way that there are no 

interferences between traces. Furthermore, once the 

virtualization is done the network administrator can 

delegate the management of network segment/s to the 

researchers as if it was a new network. Summarizing 

programming networks with OpenFlow technology take 

following advantages: 

 Network virtualization: experimental tests can be 

deployed into production networks without 

disturbing existent isolated traffic 

 Network managers can delegate virtual segments to 

be managed by researchers 

 Low cost devices: OpenFlow switches can be 

deployed into    UNIX/Linux platforms 

 OpenFlow protocol can be exploited in modern 

Ethernet switches/routers from different vendors as 

an extra functionality using TCAM 

II. METHODS AND MATERIAL 

Switch Architecture 
 

A. Switch Architecture 

There are many ways to create an Ethernet switch .The 

OpenFlow Ethernet switch architecture used in this 

paper Adopts line cards with physical media ports 

connected to switched backplane fabric. The architecture 

is similar to one of many described in , but with an 

prominence on flow-based switching where the logic is 

implemented in a single chip on the line card and takes 

advantage of a TCAM for flow matching. The line cards 

are furnished with separate input and output memory, 

lookup logic, backplane fabric interfaces, and per-port 

prediction circuitry. The lookup and policy logic may 

involve multiple layer-2 and layer-3 address tables in 

addition to a TCAMused to support per-flow forwarding 

features. Fig. 1 shows the high-level switch architecture. 

 
Figure 1: High-level switch architecture including packet prediction 

circuitry atthe input port 

Packets are received at line rate from the physical media 

ports and put into the input memory. While the packet is 

being acknowledged into memory, a block of 

combinational logic within the Media Access Controller 

(MAC), called the packet parser, is extracting important 

fields from the packet to generate aglow-key. A flow-

key is the fundamental structure used to look up and 

determine how to forward the packet according to 

OpenFlow rules. The flow-key and the forwarding 

architecture of the switch are consistent with the 

definition of a ―Type 0‖and ―Type 1‖OpenFlow 

switch .A flow-key is a concatenation of critical fields 

from the packet that uniquely identify the packet as 

being part of a flow. It can be generalized as an -tuple 

that is defined by a setoff fields from the packet. All 

packets that are part of a flow are subject to the same 

policy and treatment by the switch.  

 

B. Packet Prediction Circuitry 

The switch architecture of Fig. 1 includes packet 

prediction circuitry on each way in port. The goal of the 

circuitry is to forecast the flow-key of a received packet 

as quickly as possible, without requiring the use of the 

lookup process and TCAM. Fig. 2 shows how a packet 

signature is created by circuitry that Sneaks on the input 

memory bus as the packet is streamed into memory. 

While the flow-key is take along together, significant 

bits from the packet are extracted and used to generate a 

packet signature according to a prediction method .The 

packet signature is searched in a local per-port 

prediction Cache that consist of  a signature CAM, flow-

key RAM, and forwarding RAM. If exactly one match is 

found, the packet is expected to be part of the same flow 
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as a previously received packet with the same signature 

and forwarding can begin instantaneously. This 

constitutes hypothetical packet forwarding that reduces 

switch latency. Such forwarding by the prediction 

circuitry involves applying the same set of packet 

operations that would have been obtained from the full 

lookup process. Since the prediction circuitry is required 

on each input port of the switch, it is sensible to find the 

smallest and most efficient implementation possible. 

The flow-key RAM in Fig. 2 holds the flow-key for the 

most recent packet that has a matching signature. The 

flow-key in the RAM is related against the flow-key that 

has been assembled by the packet parser in order to 

confirm if there has been a match. This comparison is 

necessary to avoid invoking the full lookup process on 

every packet, thus saving power. The flow-key RAM is 

fundamentally a level-1 cache for the master TCAM, 

referencing the most recent forwarding directives for 

packets of the matching flow. Once a complete flow-key 

has been received and assembled by the packet parser, 

there are three possible circumstances that may occur 

with respect to the prediction logic and theoretical 

forwarding.1) Prediction hit: The flow-key matches a 

flow-key found by the prediction logic. In this case, a 

correct prediction has occurred and there is no need to 

take any further action. No lookup or search is required 

of the master TCAM, and the power required to perform 

that search is saved. 

 

 
 

Figure 2: The per-port packet prediction circuitry snoops packet data 

 

Fig. 2. The per-port packet prediction circuitry snoops 

packet data as it is received by the input MAC to create 

a compressed packet signature and a flow-key for 

validation. Possible dormancy is achieved because 

packet forwarding has already started and the 

speculation was correct. 2) Incorrect prediction: A 

signature is found, but the flow-key does not match. In 

this case, an incorrect prediction has occurred, and the 

current speculative transfer must be aborted. The master 

TCA Mmustbe searched to determine the correct 

forwarding instructions, and the local prediction cache 

must be updated. The power for the prediction cache 

searches and the partial packet transfer is wasted. 3) 

Prediction miss: No flow-key was found by the 

prediction logic. In this case, the prediction cache did 

not find a match, and the full lookup process must be 

invoked. The local prediction cache must be updated. 

The power required for searching and updating the 

prediction cache is wasted. The prediction circuitry is 

effective because it exploits the temporal locality within 

the stream of network packets. All packets in a stream 

that are members of the same flow require the same 

forwarding treatment by an Ethernet switch. The 

observation that network communications exhibit strong 

locality and that this may be used to optimize resource 

utilization is not new. There are differences of opinion 

as to whether the temporal locality of Internet traffic is 

sufficient to enable optimized forwarding using caching. 

However, different parts of the network topology are 

exposed to a smaller number of flows and are expected 

to have a greater degree of locality than previously 

discovered by studies of core Internet traffic. Recent 

data centre traffic, for example, has been observed to 

exhibit an ON–OFF pattern with strong temporal 

locality among the packet trains.  

 

C. Prediction Methods 

There are many ways to construct a packet signature, but 

since the prediction circuitry exists on each port of the 

switch, finding the balance between implementation cost 

and complexity is important. The basic approach is to 

compress significant (i.e., frequently changing) bits of 

the received packet into a signature used to search a 

prediction cache. The significant bits may come from 

predefined offsets in the packet or well-known fields in 

the packet headers 

 
Figure 3:  Indicates which bit offsets in a flow-key 

 

Fig. 3 indicates which bit offsets in a flow-key vary the 

most between subsequent flow-keys in the Server Trace. 

The other trace files obtained from different parts of the 

network topology have a similar frequency distribution. 

Combinations of these bits may be hashed to form 

portions of the signature, or they may be directly 

mapped. This paper considers two different methods that 

trade off implementation complexity for accuracy. 
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1) Direct Map: The extremely simple Direct Map 

method extracts bits from predefined locations in the 

packet as it is arriving. The offset locations have 

been chosen to include bit fields that vary the most 

between subsequent flows as seen in Fig. 3. There is 

no logic that parses the packet and adjusts the offsets 

according to frame encapsulation or protocol. Bits 

are blindly extracted at predetermined offsets. As a 

consequence, bit offsets that would normally align 

with the TCP port fields in an untagged Ethernet 

packet will be unaligned if the packet is VLAN 

tagged. Similarly, these bit offsets may point to 

random payload data if the packet is an IP fragment 

(which contains no TCP header). For a practical 

implementation of the Direct Map method, a 

different set of offsets should be considered based 

upon the port configuration. As the bits arrive from 

fixed offsets, the circuitry builds a partial signature 

to present as a key to the fully associative prediction 

cache. Missing bits that have not yet arrived are 

marked as don’t care conditions for the match. If no 

matching entries are found, there are clearly no 

previous elements from this flow in the cache and 

the packet must wait for the full flow lookup to 

complete. If there is precisely one entry found, then 

there is a chance that this entry is an exact match 

and the speculative forwarding of the packet may 

start immediately. This method forwards the packet 

as soon as possible, but can experience a higher mis 

prediction rate than methods that perform more 

intelligent parsing. 

2) Sub-Field Hash: The Sub-FieldHashmethod 

intelligently parses incoming packets to extract 

precise subfields of packet headers and uses a 

simple hashing algorithm to construct segments of 

the packet signature. The goals of this method are to 

minimize the number of incorrect predictions, but 

also to support low latency by including a relatively 

aggressive eager approach to searching the 

prediction cache. The popular DJB hash function 

[21] is applied to subfields of the 29-B flow-key as 

they arrive. The DJB hash function was chosen 

because of its simplicity, efficiency, and distribution 

characteristics over small fields. The small hash 

results are combined to create partial signatures. 

Similar to the Direct Map method, the prediction 

cache is searched as soon as a partial signature has 

been formed; where missing bits of the signature are 

marked as don’t care conditions. The number of 

times the prediction cache is searched depends upon 

the length of the packet signature and the result of 

previous searches. A number of different packet 

signature sizes have been chosen to evaluate this 

sensitivity. The Sub-Field Hash method generates 

signatures of lengths 8, 16, 24, and 32 bits. For an 

8-bit signature, the flow-key is divided into two parts the 

MAC header is hashed to create a 4-bit partial signature, 

and the IP and TCP headers are used to create another 4-

bit quantity. These two quantities are combined to create 

an 8-bit signature with which the prediction cache is 

searched at most two times per packet. Longer signature 

types allow a greater number of partial signatures and 

thus may be more aggressive at speculating the 

forwarding of the packet. However, they will also search 

the cache more frequently, consuming more power. For 

example, in the implementation the 16-bit signature is 

made up of 5 hashes and in the worst case will search 

the cache 5 times. The 24-bit signature includes 9 hashes, 

and the 32-bit signature includes 11 hashes. While long 

signatures have the potential to invoke a search of the 

prediction cache a greater number of times and consume 

more power, they are generally more accurate at 

predicting the flow membership of a packet because 

there are a greater number of  bits in the signature to 

distinguish one flow from another. It is important to 

minimize the number of incorrect predictions to avoid 

wasting power from incorrect speculative forwarding. 

Other prediction methods are possible, but may require 

further Trade-offs between complexity and cost at each 

port of the switch. For example, additional logic could 

enable application specific prediction algorithms or 

complex history traces. The Direct Map and Sub-Field 

Hash methods were chosen because they are stateless 

and can be implemented with simple combinational 

logic. 

 

D. Algorithm 

ENCRYPTION ALGORITHM 

 

A mathematical procedure for performing encryption on 

data Through the use of an algorithm, information is 

made into meaningless cipher text and requires the use 

of a key to transform the data back into its original form. 

If you are not use that eclipse project means use this 

algorithm, it’s before I gave one project that is give 

alternation. Otherwise you won’t use this one. 

 

SERIAL ALGORITHM 

 

A sequential algorithm or serial algorithm is an 

algorithm that is executed sequentially – once through, 

from start to finish, without other processing executing – 
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as opposed to concurrently or in parallel. The term is 

primarily used to contrast with concurrent algorithm or 

parallel algorithm; most standard computer algorithms 

are sequential algorithms, and not specifically identified 

as such, as sequential is a background assumption. 

Concurrency and parallelism are in general distinct 

concepts, but they often overlap – many distributed 

algorithms are both concurrent and parallel – and thus 

"sequential" is used to contrast with both, without 

distinguishing which one. If these need to be 

distinguished, the opposing pairs sequential/concurrent 

and serial/parallel may be used. 

 
E. Latency Reduction from Speculative Cut-Through 

Switching 

 

The prediction enhancement speculates on the flow 

membership of the next received packet allowing the 

forwarding engine to apply a rich set of forwarding 

policies to the packet while it is still being received. This 

allows switch forwarding to begin with the lowest 

possible latency. 

 

Switch Latency Model 

 

To understand how the prediction enhancement 

improves latency, it is first necessary to develop a model 

for switch latency. The switch architecture defined in 

Section II is applicable to either a store-and-forward 

switch or a cut-through switch. In a store-and-forward 

switch, the entire packet is completely received on the 

ingress port before lookup operations begin. In a cut-

through switch, the lookup begins as soon as enough of 

the packet has been received to assemble a flow-key. To 

increase throughput, the process of switching a packet 

can be pipelined. While the lookup process is working 

on a packet, the next packet can be copied from the 

ingress port to the input memory, and the previous 

packet can be modified and transferred to the output 

memory of the egress port. Fig. 6 shows the pipeline 

diagram for the store-and-forward switch. In order for 

the switch to maintain line rate forwarding, no stage of 

the pipeline can exceed the time it takes to receive a 

packet from the wire. On a 10-Gb/s Ethernet port, there 

are potentially 14.88 million minimum-size packets 

arriving per second; therefore, no stage can exceed 67.2 

ns. A generalized way to look at the minimum required 

pipeline stage length is to normalize the stage to 

received bit times. A minimum-size Ethernet packet is 

64 B and is therefore received in 512 bit times as 

determined by the speed of the ingress link. The duration 

of the packet Rx and packet Tx stages of the pipeline are 

directly tied to the physical media line rate. The fabric 

transit and packet modification stage is faster than the 

physical media line rate. Therefore, to forward at line 

rate, the lookup stage and the fabric transit stage must be 

no longer than the time it takes to receive a minimum-

sized packet. To simplify the calculation of switch 

latency, we assume the lookup stage time will be a 

constant and equal to the amount of time it takes to 

receive a minimum-size packet. 

 

Let Ksf be the number of bits in a minimum-size 

Ethernet packet (which is the constant 512). Let Rp be 

the received port line rate in bits/s, and let be the length 

of the packet in bits. Let Rs be the fabric interface 

transfer rate in bits/s, and assume that Rf>Rp Switch 

latency is the amount of delay a packet experiences 

inside the switch and will be measured as the amount of 

time between when the first bit of a packet is received 

on the ingress port and the time the first bit is 

transmitted on the egress port. The formula for store-

and-forward switch latency is then  

Store and Forward latency 
                  =(L/Rp)+(Ksf /Rp)+(L/Rf). (11) 

 

This formula represents the time taken to receive the 

packet plus the time to perform the lookup stage plus the 

time to make any modifications and transfer the packet 

across the fabric. (Packet transmission on the egress port 

is assumed to start immediately once the packet is in the 

output memory.) To improve store-and-forward switch 

latency, two things must change. First, the lookup 

process and packet modification with transfer across the 

backplane must begin before the current packet has been 

completely received. Second, the transmission of the 

packet on the egress port must also be allowed to begin 

before the current packet has been completely received. 

 

In the cut-through model of a switch without any 

prediction, the lookup process can begin no sooner than 

after the last bit of the packet needed to construct a flow-

key has been received.  

 

D={D1(H1)+D2(H2)+……..Dn(Hn)  

 

be the set of  functions in the classification process that 

return the starting bit displacement for the flow-key 

fields in .Then, Dn(Hn) is the starting bit offset for the 

last field necessary to create the  tuple needed for the 

lookup. If Kct is defined as the number of bits that must 

be received to construct the flow-key for the lookup 

stage to begin, then Kctis determined as 

 

                     Kct=Dn(Hn)+|Hn|                                         

 

Assuming that packet modification is part of the fabric 

transfer stage and the transmission of the received cut 

through packet may begin as soon as the first bit has 

arrived in the output memory, then we have the 

following formula for cut-through switch latency: 
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Cut-Through Latency=(Kct/Rp)+(Ksf/Rp)+1/Rf 

  

 
Figure 4:  Switch latency for a cut-through switch pipeline. 

 

F. Evaluation 

a. Experimental Setup 

In order to evaluate the effectiveness of the prediction 

approach, a program was written that consumes actual 

traces of network traffic and simulates the behavior of 

the proposed OpenFlow switch architecture. Each packet 

received is assumed to be exposed to the full flow-

matching logic of the OpenFlow switch. 

 

b. Traffic Analysis on Representative Traces 

The traces contain packet data from different network 

environments and different parts of the network 

topology as seen in Fig. 9. The highlighted ports in the 

figure show the representative locations where trace files 

were captured. Network ports that are closer to 

individual stations have fewer multiplexed flows, and 

network ports that are in the core of the network or at the 

Internet edge are likely to have a greater number of 

 
Table 1:   Trace Data Set Analysis 

 

 
Figure 5. Network topology containing representative trace capture 

points. 
multiplexed flows. Prediction methods are expected to 

be most effective in the data centre, near clusters of 

message passing servers, where the total number of 

flows is expected to be relatively small and low latency 

cut-through switching will be most beneficial. Four 

different trace datasets, described below, were used in 

the simulations, and a summary analysis of the trace data 

is shown in Table II. 

 

1) Router Traces From LBNL: Lawrence Berkeley 

National Laboratory (LBNL) maintains 11 GB of 

anonym zed packet header traces from October 2004 

through January 2005, which are available for download 

from http://www.icir.org/enterprisetracing/ 

download.html. These traces include enterprise campus 

LAN traffic from subnet links connected directly to the 

site router. A thorough analysis of these traces is 

available in [34]. 

2) Server Traces: The Server trace files were captured 

from the LAN backbone of a network-engineering 

department at the Hewlett-Packard Company in May 

2008. The trace selected contains only inbound traffic to 

a core switch with a backbone 10-GbE port connecting 

the engineering development servers. The outbound 

traffic is not included in the trace, which more 

accurately represents the type of traffic the prediction 

logic would be exposed to in an implementation of the 

architecture in Section II. 

 

1016 IEEE/ACM TRANSACTIONS ON 

NETWORKING, VOL. 22, NO. 3 
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Figure 6: Packet gap analysis shows the distribution of spacing between 

consecutive packets of the same flow up to a spacing of 10 packets. 

 

3) Client Traces: The Client trace files were captured 

from a link to a workgroup switch in the same 

engineering department. The trace selected for analysis 

captures only the inbound activity of a small number of 

engineering users, and therefore the source addresses of 

the packets are predominantly client stations. This trace 

has the highest percentage of traffic that is neither TCP 

nor UDP as seen in Table II.  

4) MPI Traces: The National Aeronautics and Space 

Administration (NASA) maintain a set of benchmarks 

developed by the Numerical Aerodynamic Simulation 

(NAS) organization in order to analyze the performance 

of parallel computer systems. These tools are called the 

NAS Parallel Benchmarks (NPB). The benchmarks are 

recognized in the industry as a representative suite of 

parallel applications. The traces collected for this study 

are the ingress capture of an individual 1-GbE port 

connected to one of the 16 compute nodes in a Linux 

Rocks cluster. Individual trace files were captured for 

each benchmark in the suite, and the intercluster 

communication used was MPI over Ethernet. Complete 

details of the NPB suite may be found at [35]. 

 

c. Temporal Locality of Network Traces 

Fig. 8 illustrates the temporal locality of the trace data 

sets by comparing the gap between consecutive packets 

of the same flow. The figure shows the percentage of 

packets that have a particular spacing between previous 

packets of the same flow. The figure only shows the 

distribution of packet spacing up to a gap of 10 packets, 

which covers approximately 75% of all packets in the 

traces. The remaining ~25% of the packets lie in the 

long tail of the distribution. The measured distribution of 

the packet flow gap in the trace datasets closely matches 

the results observed in [16]. Traces that have been 

acquired from links that aggregate fewer flows and are 

physically closer to end-stations have the highest 

temporal locality (MPI and Client). The ability to predict 

flow membership with a small per-port cache is 

expected to be most effective on these traces. 

 
 

III. RESULTS AND DISCUSSION 
A complete set of simulation results for both power and 

latency reductions were obtained for each combination 

of cache size, signature size, and trace file. In the 

following figures, a signature size of 32 bits is 

commonly used for consistency and because it 

highlights notable aspects of the proposed 

enhancements. The ability to reduce latency and power 

is strongly dependent upon the rate of correct predictions 

generated by a prediction method. 

 
Figure 7: Prediction rates for each trace data set using the Sub-Field Hash 

method with 32-bit signatures and varying prediction cache size 

 

Fig. 8 shows , and for the Sub-Field Hash method when 

run with all traces files. The figure confirms that the 

prediction circuitry is more effective when placed closer 

to servers in the data centre. The MPI traces have very 

high temporal locality, resulting in rates nearing 99%. 

 
 

Figure 8: Prediction rates for each prediction method run against the Router 

trace with 32-bit signatures and varying prediction cache size 

 

Fig. 8 compares the different prediction methods with 

the most diverse Router traces using 32-bit signatures. 

The figure clearly shows that correct prediction rates 

nearing 97% are possible even as the technique is placed 

deeper in the network topology. It also shows that the 

methods have a high incorrect prediction rate when the 

cache size is small. This is understandable since both 

methods stop searching the prediction cache under two 

conditions—when there is exactly one entry that 

matches the partial signature, or when there are no 

entries that match. When the cache size is small, it is 

more likely that a small partial signature will match 

exactly one entry because  there is little diversity in the 

cache. Larger caches support more diversity, reducing 

the chance of a false positive match and thus the number 

of incorrect predictions. A prediction cache miss occurs 

when a new flow is established or the signature for an 
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existing flow has been removed from the cache. Fig. 9 

shows that the Direct Map method has a slightly lower 

prediction cache miss rate with small caches % than the 

Sub-Field Hash method. This is because the Direct Map 

method has a higher incorrect prediction rate with lower 

cache sizes. Incorrect predictions are not counted as 

cache misses—whether there is an incorrect prediction 

or a cache miss, the same switch latency penalty is paid, 

so the more speculative approach tends to benefit in the 

overall latency calculations. The downside to the more 

speculative Direct Map approach is that it potentially 

wastes backplane resources and power, which in practice 

is not free. 

 
Figure 9. Difference between Direct Map and Sub-Field Hash methods when 

making incorrect predictions on the Client trace. 

 

 

The Sub-Field Hash method has lower incorrect 

predictions since it takes into account a greater number 

of bits when creating a signature. This is particularly 

relevant when the signature size is small and the cache is 

large as seen in Fig. 9. As the number of bits used to 

represent a signature grows, the two methods perform 

similarly. 

 
Figure 10. Comparison of prediction cache misses on the Client trace. Cache 

misses are preferred to incorrect predictions that need speculation cleanupdhs 

 

Fig. 10 shows that the Direct Map method has lower 

prediction cache misses on the Client trace than the Sub- 

Field Hash method, but at the expense of greater 

incorrect predictions. Recall that the Client trace has the 

highest mix of non TCP/UDP traffic—the Client trace 

dataset has 18% ARP packets and 2% other layer-2 

frames, while the Server and Router trace files have 99% 

and 98% IP traffic, respectively. Since the Direct Map 

method simply extracts bits from predetermined offsets, 

and those offsets are optimized for TCP/UDP traffic, it 

is no surprise that the Direct Map method has the higher 

number of false positive matches between the two. Fig. 

14 shows the effectiveness of hashing over selecting 

predefined bits for all signature and cache sizes used 

with the Client trace. When considering how latency can 

be reduced, one would expect that improved accuracy 

from the largest signature size and cache size would be 

the most effective. However, for latency reduction, the 

objective of packet prediction is to begin forwarding the 

packet as soon as possible with the highest probability 

that the speculation is correct. Fig. 11 shows the 

reduction in switch latency on the Server trace for 

different packet prediction schemes as compared to a 

conventional store-and-forward and cut-through switch. 

 
Figure 11:. Comparison of the latency reduction achieved by each prediction 

method on the Server traces using 32-bit signatures. 

Fig. 11 shows there is very little difference between 

methods when it comes to latency reduction. This is 

because both methods have similar correct prediction 

rates. Where the methods differ is in the mix of incorrect 

predictions and cache misses as seen in Figs. 13 and 14. 

These differences will have a bigger impact on power 

reduction since incorrect predictions require aborting 

backplane transfers that are strictly a waste of power. 

The Direct Map method has the lowest latency with a 

64-entry cache—the switch latency for this 

configuration is 0.13 times the latency of a store-and-

forward switch and 0.33 times the latency of a cut-

through switch. This corresponds to nearly a factor-of-8 

and a factor-of-3 reduction in latency, respectively. 

IV. CONCLUSION 

 
Enhancing an OpenFlow switch with per-port packet 

prediction circuitry is an effective means for 

simultaneously reducing power and switch latency 

without sacrificing flexibility and rich packet 

processing. The OpenFlow Switching community is 
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working to add Quality Of Service (QoS)  criteria to the 

technology. It could be interesting to create an 

environment in which there are different flows with 

different QoS priorities. Two different prediction 

methods that trade off per-port complexity for accuracy 

where shown to be effective. The more accurate Sub-

Field Hash method is more effective at reducing power 

consumption because of a lower incorrect prediction 

rate, while equivalent latency reduction can be achieved 

even with the simplistic Direct Map method. Other 

important reasons why  OpenFlow must be taken into 

account are that it can be installed on a PC or a 

commercial router as an added function in TCAM and 

that is a technology backed by major networking 

manufacturers such as CISCO, Juniper, HP and 

NEC.Finally we can conclude that Open Flow although 

can be still considered novel or immature, it is an 

interesting technology to network managers that want to 

isolate flows separating production and experimental 

traffic, or to someone who wants to design a 

configurable network 
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