
IJSRSET152229 | Received: 7 March 2015 | Accepted: 12 March 2015 | March-April 2015 [(1)2: 95-103]

Themed Section: Engineering and Technology

95

Packet Prediction Circuitry to Reduce Latency and Power Using OpenFlow
Switches

Adhirai B, Akshaya K, P Prema
Department of Computer Science, Dhanalakshmi College of Engineering, Chennai, Tamilnadu, India

ABSTRACT

The Ethernet switch is a major building block for today’s enterprise networks and data centers. As network

technologies congregate ahead a single Ethernet fabric,there is enduring pressure to increae the performance and

efficiency of the switch while maintaining elasticity and a well-to-do position of packet processing features. The

OpenFlow architecture aims to provide elasticity and programmable packet processing to meet these converging

needs. Of the several ways to generate an OpenFlow switch, a popular preference is to create deep use of ternary

content addressable memories (TCAMs). Regrettably, TCAMs can consume a significant amount of power and,

when used to equal flows in an OpenFlow switch, put a hurdle on switch latency. In this paper, we propose

enhancing an OpenFlow Ethernet switch with per-port packet prediction circuitry in order to simultaneously reduce

latency and power consumption without sacrificing rich policy-based forwarding enabled by the OpenFlow

architecture. Packet prediction exploits the sequential position network communications to predict the flow

arrangement of arriving packets. When predictions are correct, latency can be reduced, and considerable power

savings can be achieved from bypassing the full lookup process. IP and Transport networks are controlled and

operated independently today, leading to significant Capex and Opex inefficiencies for the providers. We discuss a

unified approach with OpenFlow, and present a recent demonstration of a unified control plane for OpenFlow

enabled IP/Ethernet networks. Imitation studies using actual network traces point out that correct prediction rates of

97% are achievable using only a small amount of prediction circuitry per port. OpenFlow is based on an Ethernet

switch, with an internal flow-table, and a standardized interface to add and remove flow entries. Our goal is to

encourage networking vendors to add OpenFlow to their switch products for deployment in college campus

backbones and wiring closets. We believe that OpenFlow is a pragmatic compromise: on one hand, it allows

researchers to run experiments on heterogeneous switches in a uniform way at line-rate and with high port-density;

while on the other hand, vendors do not need to expose the internal workings of their switches.

Keywords: Ethernet networks, packet switching, software, Transmission Control Protocol, Transport Layer

Security, Media Access Controller, TCAM, Packet Prediction Circuitry, TCAMmustbe

I. INTRODUCTION

The OpenFlow enables remote controllers to determine

the path of network packets through the network of

switches. At least two controllers are recommended — a

primary, and a secondary as backup. This separation of

the control from the forwarding allows for more

sophisticated traffic management than is feasible using

access control lists (ACLs) and routing protocols. Also,

OpenFlow allows switches from different suppliers —

often each with their own proprietary interfaces and

scripting languages — to be managed remotely using a

single, open protocol. Its inventors consider OpenFlow

an enabler of Software defined networking

(SDN).OpenFlow allows remote administration of a

switch's packet forwarding tables, by adding, modifying

and removing packet matching rules and actions. This

way, routing decisions can be made periodically or ad

hoc by the controller and translated into rules and

actions with a configurable lifespan, which are then

deployed to a switch's flow table, leaving the actual

forwarding of matched packets to the switch at wire

speed for the duration of those rules. Packets which are

unmatched by the switch can be forwarded to the

controller. The controller can then decide to modify

existing flow table rules on one or more switches or to

deploy new rules, to prevent a structural flow of traffic

© 2015 IJSRSET | Volume 1 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

96

between switch and controller. It could even decide to

forward the traffic itself, provided that it has told the

switch to forward entire packets instead of just their

header. The OpenFlow protocol is layered on top of the

Transmission Control Protocol (TCP), and prescribes the

use of Transport Layer Security (TLS). Controllers

should listen on TCP port 6653 for switches that want to

set up a connection. Earlier versions of the OpenFlow

protocol unofficially used port 6633.Networks have

become a critical part of business and institutions. A

failure in a network could become a failure in business

processes and the consequent money lost. Therefore

network administrators have to ensure a perfect network

running close to 100% of the time. But many times

researchers need real environments in which they can

test experimental network protocols and usually

encounter opposition from network administrators who

forbid them to test their experiments in production

networks. Here is where it appears the term

programmable networks and where OpenFlow

technology can help to solve this problematic.

OpenFlow technology allows network administrators to

segment telecommunication networks programming the

devices involved in the system. OpenFlow devices

identify different traffic flows following rules pre-

configured by network managers. This technology

virtualizes network into flows in a way that there are no

interferences between traces. Furthermore, once the

virtualization is done the network administrator can

delegate the management of network segment/s to the

researchers as if it was a new network. Summarizing

programming networks with OpenFlow technology take

following advantages:

 Network virtualization: experimental tests can be

deployed into production networks without

disturbing existent isolated traffic

 Network managers can delegate virtual segments to

be managed by researchers

 Low cost devices: OpenFlow switches can be

deployed into UNIX/Linux platforms

 OpenFlow protocol can be exploited in modern

Ethernet switches/routers from different vendors as

an extra functionality using TCAM

II. METHODS AND MATERIAL

Switch Architecture

A. Switch Architecture

There are many ways to create an Ethernet switch .The

OpenFlow Ethernet switch architecture used in this

paper Adopts line cards with physical media ports

connected to switched backplane fabric. The architecture

is similar to one of many described in , but with an

prominence on flow-based switching where the logic is

implemented in a single chip on the line card and takes

advantage of a TCAM for flow matching. The line cards

are furnished with separate input and output memory,

lookup logic, backplane fabric interfaces, and per-port

prediction circuitry. The lookup and policy logic may

involve multiple layer-2 and layer-3 address tables in

addition to a TCAMused to support per-flow forwarding

features. Fig. 1 shows the high-level switch architecture.

Figure 1: High-level switch architecture including packet prediction

circuitry atthe input port

Packets are received at line rate from the physical media

ports and put into the input memory. While the packet is

being acknowledged into memory, a block of

combinational logic within the Media Access Controller

(MAC), called the packet parser, is extracting important

fields from the packet to generate aglow-key. A flow-

key is the fundamental structure used to look up and

determine how to forward the packet according to

OpenFlow rules. The flow-key and the forwarding

architecture of the switch are consistent with the

definition of a ―Type 0‖and ―Type 1‖OpenFlow

switch .A flow-key is a concatenation of critical fields

from the packet that uniquely identify the packet as

being part of a flow. It can be generalized as an -tuple

that is defined by a setoff fields from the packet. All

packets that are part of a flow are subject to the same

policy and treatment by the switch.

B. Packet Prediction Circuitry

The switch architecture of Fig. 1 includes packet

prediction circuitry on each way in port. The goal of the

circuitry is to forecast the flow-key of a received packet

as quickly as possible, without requiring the use of the

lookup process and TCAM. Fig. 2 shows how a packet

signature is created by circuitry that Sneaks on the input

memory bus as the packet is streamed into memory.

While the flow-key is take along together, significant

bits from the packet are extracted and used to generate a

packet signature according to a prediction method .The

packet signature is searched in a local per-port

prediction Cache that consist of a signature CAM, flow-

key RAM, and forwarding RAM. If exactly one match is

found, the packet is expected to be part of the same flow

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

97

as a previously received packet with the same signature

and forwarding can begin instantaneously. This

constitutes hypothetical packet forwarding that reduces

switch latency. Such forwarding by the prediction

circuitry involves applying the same set of packet

operations that would have been obtained from the full

lookup process. Since the prediction circuitry is required

on each input port of the switch, it is sensible to find the

smallest and most efficient implementation possible.

The flow-key RAM in Fig. 2 holds the flow-key for the

most recent packet that has a matching signature. The

flow-key in the RAM is related against the flow-key that

has been assembled by the packet parser in order to

confirm if there has been a match. This comparison is

necessary to avoid invoking the full lookup process on

every packet, thus saving power. The flow-key RAM is

fundamentally a level-1 cache for the master TCAM,

referencing the most recent forwarding directives for

packets of the matching flow. Once a complete flow-key

has been received and assembled by the packet parser,

there are three possible circumstances that may occur

with respect to the prediction logic and theoretical

forwarding.1) Prediction hit: The flow-key matches a

flow-key found by the prediction logic. In this case, a

correct prediction has occurred and there is no need to

take any further action. No lookup or search is required

of the master TCAM, and the power required to perform

that search is saved.

Figure 2: The per-port packet prediction circuitry snoops packet data

Fig. 2. The per-port packet prediction circuitry snoops

packet data as it is received by the input MAC to create

a compressed packet signature and a flow-key for

validation. Possible dormancy is achieved because

packet forwarding has already started and the

speculation was correct. 2) Incorrect prediction: A

signature is found, but the flow-key does not match. In

this case, an incorrect prediction has occurred, and the

current speculative transfer must be aborted. The master

TCA Mmustbe searched to determine the correct

forwarding instructions, and the local prediction cache

must be updated. The power for the prediction cache

searches and the partial packet transfer is wasted. 3)

Prediction miss: No flow-key was found by the

prediction logic. In this case, the prediction cache did

not find a match, and the full lookup process must be

invoked. The local prediction cache must be updated.

The power required for searching and updating the

prediction cache is wasted. The prediction circuitry is

effective because it exploits the temporal locality within

the stream of network packets. All packets in a stream

that are members of the same flow require the same

forwarding treatment by an Ethernet switch. The

observation that network communications exhibit strong

locality and that this may be used to optimize resource

utilization is not new. There are differences of opinion

as to whether the temporal locality of Internet traffic is

sufficient to enable optimized forwarding using caching.

However, different parts of the network topology are

exposed to a smaller number of flows and are expected

to have a greater degree of locality than previously

discovered by studies of core Internet traffic. Recent

data centre traffic, for example, has been observed to

exhibit an ON–OFF pattern with strong temporal

locality among the packet trains.

C. Prediction Methods

There are many ways to construct a packet signature, but

since the prediction circuitry exists on each port of the

switch, finding the balance between implementation cost

and complexity is important. The basic approach is to

compress significant (i.e., frequently changing) bits of

the received packet into a signature used to search a

prediction cache. The significant bits may come from

predefined offsets in the packet or well-known fields in

the packet headers

Figure 3: Indicates which bit offsets in a flow-key

Fig. 3 indicates which bit offsets in a flow-key vary the

most between subsequent flow-keys in the Server Trace.

The other trace files obtained from different parts of the

network topology have a similar frequency distribution.

Combinations of these bits may be hashed to form

portions of the signature, or they may be directly

mapped. This paper considers two different methods that

trade off implementation complexity for accuracy.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

98

1) Direct Map: The extremely simple Direct Map

method extracts bits from predefined locations in the

packet as it is arriving. The offset locations have

been chosen to include bit fields that vary the most

between subsequent flows as seen in Fig. 3. There is

no logic that parses the packet and adjusts the offsets

according to frame encapsulation or protocol. Bits

are blindly extracted at predetermined offsets. As a

consequence, bit offsets that would normally align

with the TCP port fields in an untagged Ethernet

packet will be unaligned if the packet is VLAN

tagged. Similarly, these bit offsets may point to

random payload data if the packet is an IP fragment

(which contains no TCP header). For a practical

implementation of the Direct Map method, a

different set of offsets should be considered based

upon the port configuration. As the bits arrive from

fixed offsets, the circuitry builds a partial signature

to present as a key to the fully associative prediction

cache. Missing bits that have not yet arrived are

marked as don’t care conditions for the match. If no

matching entries are found, there are clearly no

previous elements from this flow in the cache and

the packet must wait for the full flow lookup to

complete. If there is precisely one entry found, then

there is a chance that this entry is an exact match

and the speculative forwarding of the packet may

start immediately. This method forwards the packet

as soon as possible, but can experience a higher mis

prediction rate than methods that perform more

intelligent parsing.

2) Sub-Field Hash: The Sub-FieldHashmethod

intelligently parses incoming packets to extract

precise subfields of packet headers and uses a

simple hashing algorithm to construct segments of

the packet signature. The goals of this method are to

minimize the number of incorrect predictions, but

also to support low latency by including a relatively

aggressive eager approach to searching the

prediction cache. The popular DJB hash function

[21] is applied to subfields of the 29-B flow-key as

they arrive. The DJB hash function was chosen

because of its simplicity, efficiency, and distribution

characteristics over small fields. The small hash

results are combined to create partial signatures.

Similar to the Direct Map method, the prediction

cache is searched as soon as a partial signature has

been formed; where missing bits of the signature are

marked as don’t care conditions. The number of

times the prediction cache is searched depends upon

the length of the packet signature and the result of

previous searches. A number of different packet

signature sizes have been chosen to evaluate this

sensitivity. The Sub-Field Hash method generates

signatures of lengths 8, 16, 24, and 32 bits. For an

8-bit signature, the flow-key is divided into two parts the

MAC header is hashed to create a 4-bit partial signature,

and the IP and TCP headers are used to create another 4-

bit quantity. These two quantities are combined to create

an 8-bit signature with which the prediction cache is

searched at most two times per packet. Longer signature

types allow a greater number of partial signatures and

thus may be more aggressive at speculating the

forwarding of the packet. However, they will also search

the cache more frequently, consuming more power. For

example, in the implementation the 16-bit signature is

made up of 5 hashes and in the worst case will search

the cache 5 times. The 24-bit signature includes 9 hashes,

and the 32-bit signature includes 11 hashes. While long

signatures have the potential to invoke a search of the

prediction cache a greater number of times and consume

more power, they are generally more accurate at

predicting the flow membership of a packet because

there are a greater number of bits in the signature to

distinguish one flow from another. It is important to

minimize the number of incorrect predictions to avoid

wasting power from incorrect speculative forwarding.

Other prediction methods are possible, but may require

further Trade-offs between complexity and cost at each

port of the switch. For example, additional logic could

enable application specific prediction algorithms or

complex history traces. The Direct Map and Sub-Field

Hash methods were chosen because they are stateless

and can be implemented with simple combinational

logic.

D. Algorithm

ENCRYPTION ALGORITHM

A mathematical procedure for performing encryption on

data Through the use of an algorithm, information is

made into meaningless cipher text and requires the use

of a key to transform the data back into its original form.

If you are not use that eclipse project means use this

algorithm, it’s before I gave one project that is give

alternation. Otherwise you won’t use this one.

SERIAL ALGORITHM

A sequential algorithm or serial algorithm is an

algorithm that is executed sequentially – once through,

from start to finish, without other processing executing –

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

99

as opposed to concurrently or in parallel. The term is

primarily used to contrast with concurrent algorithm or

parallel algorithm; most standard computer algorithms

are sequential algorithms, and not specifically identified

as such, as sequential is a background assumption.

Concurrency and parallelism are in general distinct

concepts, but they often overlap – many distributed

algorithms are both concurrent and parallel – and thus

"sequential" is used to contrast with both, without

distinguishing which one. If these need to be

distinguished, the opposing pairs sequential/concurrent

and serial/parallel may be used.

E. Latency Reduction from Speculative Cut-Through

Switching

The prediction enhancement speculates on the flow

membership of the next received packet allowing the

forwarding engine to apply a rich set of forwarding

policies to the packet while it is still being received. This

allows switch forwarding to begin with the lowest

possible latency.

Switch Latency Model

To understand how the prediction enhancement

improves latency, it is first necessary to develop a model

for switch latency. The switch architecture defined in

Section II is applicable to either a store-and-forward

switch or a cut-through switch. In a store-and-forward

switch, the entire packet is completely received on the

ingress port before lookup operations begin. In a cut-

through switch, the lookup begins as soon as enough of

the packet has been received to assemble a flow-key. To

increase throughput, the process of switching a packet

can be pipelined. While the lookup process is working

on a packet, the next packet can be copied from the

ingress port to the input memory, and the previous

packet can be modified and transferred to the output

memory of the egress port. Fig. 6 shows the pipeline

diagram for the store-and-forward switch. In order for

the switch to maintain line rate forwarding, no stage of

the pipeline can exceed the time it takes to receive a

packet from the wire. On a 10-Gb/s Ethernet port, there

are potentially 14.88 million minimum-size packets

arriving per second; therefore, no stage can exceed 67.2

ns. A generalized way to look at the minimum required

pipeline stage length is to normalize the stage to

received bit times. A minimum-size Ethernet packet is

64 B and is therefore received in 512 bit times as

determined by the speed of the ingress link. The duration

of the packet Rx and packet Tx stages of the pipeline are

directly tied to the physical media line rate. The fabric

transit and packet modification stage is faster than the

physical media line rate. Therefore, to forward at line

rate, the lookup stage and the fabric transit stage must be

no longer than the time it takes to receive a minimum-

sized packet. To simplify the calculation of switch

latency, we assume the lookup stage time will be a

constant and equal to the amount of time it takes to

receive a minimum-size packet.

Let Ksf be the number of bits in a minimum-size

Ethernet packet (which is the constant 512). Let Rp be

the received port line rate in bits/s, and let be the length

of the packet in bits. Let Rs be the fabric interface

transfer rate in bits/s, and assume that Rf>Rp Switch

latency is the amount of delay a packet experiences

inside the switch and will be measured as the amount of

time between when the first bit of a packet is received

on the ingress port and the time the first bit is

transmitted on the egress port. The formula for store-

and-forward switch latency is then

Store and Forward latency
 =(L/Rp)+(Ksf /Rp)+(L/Rf). (11)

This formula represents the time taken to receive the

packet plus the time to perform the lookup stage plus the

time to make any modifications and transfer the packet

across the fabric. (Packet transmission on the egress port

is assumed to start immediately once the packet is in the

output memory.) To improve store-and-forward switch

latency, two things must change. First, the lookup

process and packet modification with transfer across the

backplane must begin before the current packet has been

completely received. Second, the transmission of the

packet on the egress port must also be allowed to begin

before the current packet has been completely received.

In the cut-through model of a switch without any

prediction, the lookup process can begin no sooner than

after the last bit of the packet needed to construct a flow-

key has been received.

D={D1(H1)+D2(H2)+……..Dn(Hn)

be the set of functions in the classification process that

return the starting bit displacement for the flow-key

fields in .Then, Dn(Hn) is the starting bit offset for the

last field necessary to create the tuple needed for the

lookup. If Kct is defined as the number of bits that must

be received to construct the flow-key for the lookup

stage to begin, then Kctis determined as

 Kct=Dn(Hn)+|Hn|

Assuming that packet modification is part of the fabric

transfer stage and the transmission of the received cut

through packet may begin as soon as the first bit has

arrived in the output memory, then we have the

following formula for cut-through switch latency:

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

100

Cut-Through Latency=(Kct/Rp)+(Ksf/Rp)+1/Rf

Figure 4: Switch latency for a cut-through switch pipeline.

F. Evaluation

a. Experimental Setup

In order to evaluate the effectiveness of the prediction

approach, a program was written that consumes actual

traces of network traffic and simulates the behavior of

the proposed OpenFlow switch architecture. Each packet

received is assumed to be exposed to the full flow-

matching logic of the OpenFlow switch.

b. Traffic Analysis on Representative Traces

The traces contain packet data from different network

environments and different parts of the network

topology as seen in Fig. 9. The highlighted ports in the

figure show the representative locations where trace files

were captured. Network ports that are closer to

individual stations have fewer multiplexed flows, and

network ports that are in the core of the network or at the

Internet edge are likely to have a greater number of

Table 1: Trace Data Set Analysis

Figure 5. Network topology containing representative trace capture

points.
multiplexed flows. Prediction methods are expected to

be most effective in the data centre, near clusters of

message passing servers, where the total number of

flows is expected to be relatively small and low latency

cut-through switching will be most beneficial. Four

different trace datasets, described below, were used in

the simulations, and a summary analysis of the trace data

is shown in Table II.

1) Router Traces From LBNL: Lawrence Berkeley

National Laboratory (LBNL) maintains 11 GB of

anonym zed packet header traces from October 2004

through January 2005, which are available for download

from http://www.icir.org/enterprisetracing/

download.html. These traces include enterprise campus

LAN traffic from subnet links connected directly to the

site router. A thorough analysis of these traces is

available in [34].

2) Server Traces: The Server trace files were captured

from the LAN backbone of a network-engineering

department at the Hewlett-Packard Company in May

2008. The trace selected contains only inbound traffic to

a core switch with a backbone 10-GbE port connecting

the engineering development servers. The outbound

traffic is not included in the trace, which more

accurately represents the type of traffic the prediction

logic would be exposed to in an implementation of the

architecture in Section II.

1016 IEEE/ACM TRANSACTIONS ON

NETWORKING, VOL. 22, NO. 3

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

101

Figure 6: Packet gap analysis shows the distribution of spacing between

consecutive packets of the same flow up to a spacing of 10 packets.

3) Client Traces: The Client trace files were captured

from a link to a workgroup switch in the same

engineering department. The trace selected for analysis

captures only the inbound activity of a small number of

engineering users, and therefore the source addresses of

the packets are predominantly client stations. This trace

has the highest percentage of traffic that is neither TCP

nor UDP as seen in Table II.

4) MPI Traces: The National Aeronautics and Space

Administration (NASA) maintain a set of benchmarks

developed by the Numerical Aerodynamic Simulation

(NAS) organization in order to analyze the performance

of parallel computer systems. These tools are called the

NAS Parallel Benchmarks (NPB). The benchmarks are

recognized in the industry as a representative suite of

parallel applications. The traces collected for this study

are the ingress capture of an individual 1-GbE port

connected to one of the 16 compute nodes in a Linux

Rocks cluster. Individual trace files were captured for

each benchmark in the suite, and the intercluster

communication used was MPI over Ethernet. Complete

details of the NPB suite may be found at [35].

c. Temporal Locality of Network Traces

Fig. 8 illustrates the temporal locality of the trace data

sets by comparing the gap between consecutive packets

of the same flow. The figure shows the percentage of

packets that have a particular spacing between previous

packets of the same flow. The figure only shows the

distribution of packet spacing up to a gap of 10 packets,

which covers approximately 75% of all packets in the

traces. The remaining ~25% of the packets lie in the

long tail of the distribution. The measured distribution of

the packet flow gap in the trace datasets closely matches

the results observed in [16]. Traces that have been

acquired from links that aggregate fewer flows and are

physically closer to end-stations have the highest

temporal locality (MPI and Client). The ability to predict

flow membership with a small per-port cache is

expected to be most effective on these traces.

III. RESULTS AND DISCUSSION
A complete set of simulation results for both power and

latency reductions were obtained for each combination

of cache size, signature size, and trace file. In the

following figures, a signature size of 32 bits is

commonly used for consistency and because it

highlights notable aspects of the proposed

enhancements. The ability to reduce latency and power

is strongly dependent upon the rate of correct predictions

generated by a prediction method.

Figure 7: Prediction rates for each trace data set using the Sub-Field Hash

method with 32-bit signatures and varying prediction cache size

Fig. 8 shows , and for the Sub-Field Hash method when

run with all traces files. The figure confirms that the

prediction circuitry is more effective when placed closer

to servers in the data centre. The MPI traces have very

high temporal locality, resulting in rates nearing 99%.

Figure 8: Prediction rates for each prediction method run against the Router

trace with 32-bit signatures and varying prediction cache size

Fig. 8 compares the different prediction methods with

the most diverse Router traces using 32-bit signatures.

The figure clearly shows that correct prediction rates

nearing 97% are possible even as the technique is placed

deeper in the network topology. It also shows that the

methods have a high incorrect prediction rate when the

cache size is small. This is understandable since both

methods stop searching the prediction cache under two

conditions—when there is exactly one entry that

matches the partial signature, or when there are no

entries that match. When the cache size is small, it is

more likely that a small partial signature will match

exactly one entry because there is little diversity in the

cache. Larger caches support more diversity, reducing

the chance of a false positive match and thus the number

of incorrect predictions. A prediction cache miss occurs

when a new flow is established or the signature for an

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

102

existing flow has been removed from the cache. Fig. 9

shows that the Direct Map method has a slightly lower

prediction cache miss rate with small caches % than the

Sub-Field Hash method. This is because the Direct Map

method has a higher incorrect prediction rate with lower

cache sizes. Incorrect predictions are not counted as

cache misses—whether there is an incorrect prediction

or a cache miss, the same switch latency penalty is paid,

so the more speculative approach tends to benefit in the

overall latency calculations. The downside to the more

speculative Direct Map approach is that it potentially

wastes backplane resources and power, which in practice

is not free.

Figure 9. Difference between Direct Map and Sub-Field Hash methods when

making incorrect predictions on the Client trace.

The Sub-Field Hash method has lower incorrect

predictions since it takes into account a greater number

of bits when creating a signature. This is particularly

relevant when the signature size is small and the cache is

large as seen in Fig. 9. As the number of bits used to

represent a signature grows, the two methods perform

similarly.

Figure 10. Comparison of prediction cache misses on the Client trace. Cache

misses are preferred to incorrect predictions that need speculation cleanupdhs

Fig. 10 shows that the Direct Map method has lower

prediction cache misses on the Client trace than the Sub-

Field Hash method, but at the expense of greater

incorrect predictions. Recall that the Client trace has the

highest mix of non TCP/UDP traffic—the Client trace

dataset has 18% ARP packets and 2% other layer-2

frames, while the Server and Router trace files have 99%

and 98% IP traffic, respectively. Since the Direct Map

method simply extracts bits from predetermined offsets,

and those offsets are optimized for TCP/UDP traffic, it

is no surprise that the Direct Map method has the higher

number of false positive matches between the two. Fig.

14 shows the effectiveness of hashing over selecting

predefined bits for all signature and cache sizes used

with the Client trace. When considering how latency can

be reduced, one would expect that improved accuracy

from the largest signature size and cache size would be

the most effective. However, for latency reduction, the

objective of packet prediction is to begin forwarding the

packet as soon as possible with the highest probability

that the speculation is correct. Fig. 11 shows the

reduction in switch latency on the Server trace for

different packet prediction schemes as compared to a

conventional store-and-forward and cut-through switch.

Figure 11:. Comparison of the latency reduction achieved by each prediction

method on the Server traces using 32-bit signatures.

Fig. 11 shows there is very little difference between

methods when it comes to latency reduction. This is

because both methods have similar correct prediction

rates. Where the methods differ is in the mix of incorrect

predictions and cache misses as seen in Figs. 13 and 14.

These differences will have a bigger impact on power

reduction since incorrect predictions require aborting

backplane transfers that are strictly a waste of power.

The Direct Map method has the lowest latency with a

64-entry cache—the switch latency for this

configuration is 0.13 times the latency of a store-and-

forward switch and 0.33 times the latency of a cut-

through switch. This corresponds to nearly a factor-of-8

and a factor-of-3 reduction in latency, respectively.

IV. CONCLUSION

Enhancing an OpenFlow switch with per-port packet

prediction circuitry is an effective means for

simultaneously reducing power and switch latency

without sacrificing flexibility and rich packet

processing. The OpenFlow Switching community is

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

103

working to add Quality Of Service (QoS) criteria to the

technology. It could be interesting to create an

environment in which there are different flows with

different QoS priorities. Two different prediction

methods that trade off per-port complexity for accuracy

where shown to be effective. The more accurate Sub-

Field Hash method is more effective at reducing power

consumption because of a lower incorrect prediction

rate, while equivalent latency reduction can be achieved

even with the simplistic Direct Map method. Other

important reasons why OpenFlow must be taken into

account are that it can be installed on a PC or a

commercial router as an added function in TCAM and

that is a technology backed by major networking

manufacturers such as CISCO, Juniper, HP and

NEC.Finally we can conclude that Open Flow although

can be still considered novel or immature, it is an

interesting technology to network managers that want to

isolate flows separating production and experimental

traffic, or to someone who wants to design a

configurable network

V. REFERENCES

[1] N. McKeown, T. Anderson,H.Balakrishnan, G. Parulkar, L.

Peterson, J. Rexford, S. Shenker, and J. Turner, ―OpenFlow:
Enabling innovation in campus networks,‖ Comput. Commun.
Rev., vol. 38, pp. 69–74, 2008.

[2] B. Salisbury, ―TCAMs and OpenFlow—What every SDN
practitioner must know,‖ SDN Central, 2012 [Online].
Available:http://www.sdncentral.com/products-technologies
/sdn-openflow-tcam-need-to-know/2012/07/

[3] B. Heller, ―OpenFlow switch specification,‖ OpenFlow
Consortium, 2008 [Online]. Available: http://www.
openflowswitch.org/documents/openflow-spec-v0.8.9.pdf

[4] P. Gupta, S. Lin, and N. McKeown, ―Routing lookups in
hardware at memory access speeds,‖ in Proc. 17th Annu. IEEE
INFOCOM, 1998, vol. 3, pp. 1240–1247.

[5] H. H. Y. Tzeng and T. Przygienda, ―On fast address-lookup
algorithms,‖ IEEE J. Sel. Areas Commun., vol. 17, no. 6, pp.
1067–1082, Jun. 1999.

[6] J. van Lunteren and T. Engbersen, ―Fast and scalable packet
classification,‖ IEEE J. Sel. Areas Commun., vol. 21, no. 4, pp.
560–571, May 2003.

[7] J. Liao, ―SDN system performance,‖ 2012 [Online]. Available:
http:// pica8.org/blogs/?p=201

[8] R. Ozdag, ―Intel ethernet switch FM6000 series—Software
defined neworking,‖ Intel Corporation, 2012, p. 8.

[9] Arista Networks, Inc., Santa Clara, CA, USA, ―7150 series 1/10
GbE SFP ultra low latency switch,‖ 2012.

[10] Cisco Systems, Inc., San Jose, CA, USA, ―Cisco Nexus 3548
switch architecture,‖ 2012.

[11] D. Serpanos and T. Wolf, Architecture of Network Systems.
Boston, MA, USA: Morgan Kaufmann.

[12] P. Gupta and N. McKeown, ―Algorithms for packet
classification,‖ IEEE Netw., vol. 15, no. 2, pp. 24–32, Mar.
2001, 2001.

[13] D. E. Taylor, ―Survey and taxonomy of packet classification
techniques,‖Comput.Surv., vol. 37, pp. 238–275, 2005.

[14] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu, ―Next
generation on-chip networks: What kind of congestion control

do we need?,‖ in Proc. 9thACM SIGCOMMWorkshopHot
Topics Netw.,Monterey, CA, USA, Art. no. 12.

[15] C. Minkenberg,M. Gusat, and G. Rodriguez, ―Adaptive routing
in data center bridges,‖ in Proc. 17th IEEE HOTI, 2009, pp. 33–
41.

[16] R. Jain and S. Routhier, ―Packet trains-measurements and a new
model for computer network traffic,‖ IEEE J. Sel. Areas
Commun., vol. SAC-4, no. 6, pp. 986–995, Sep. 1986.

[17] C. Partridge, ―Locality and route caches,‖ 1996 [Online].
Available: http://www.caida.org/outreach/isma/9602/positions/
partridge.html

[18] D. C. Feldmeier, ―Improving gateway performance with a
routing-table cache,‖ in Proc. 7th Annu. IEEE INFOCOM,
1988, pp. 298–307.

[19] P. Newman, G. Minshall, T. Lyon, and L. Huston, ―IP switching
and gigabit routers,‖ IEEE Commun. Mag., vol. 35, no. 1, pp.
64–69, Jan. 1997.

[20] T. Benson, A. Anand, A. Akella, and M. Zhang, ―Understanding
data center traffic characteristics,‖ in Proc. ACM SIGCOMM
Workshop Enterprise Netw., Barcelona, Spain, 2009, pp. 65–
72.

[21] A. Partow, ―General purpose hash function algorithms,‖ 2013
[Online].Available: http://www.partow.net/programming/
hashfunctions/index.html

[22] G. Ananthanarayanan and R. H. Katz, ―Greening the switch,‖ in
Proc. USENIX Conf. Power Aware Comput. Syst., San Diego,
CA, USA, 2008, p. 7.

[23] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, ―A
power benchmarking framework for network devices,‖ in Proc.
NETWORKING, 2009, pp. 795–808.

[24] H.-S.Wang, L.-S. Peh, and S. Malik, ―Apower model for
routers: Modeling alpha 21364 and InfiniBand routers,‖ IEEE
Micro, vol. 23, no. 1, pp. 26–35, Jan.–Feb. 2003.

[25] T. T. Ye, L. Benini, and G. De Micheli, ―Analysis of power
consumption on switch fabrics in network routers,‖ in Proc.
39th Design Autom. Conf., 2002, pp. 524–529.

http://www/
http://www.caida.org/outreach/isma/9602/positions/
http://www.partow.net/programming/

