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ABSTRACT 
 

This paper presents an overview of micromechanics analysis of piezoelectric composites. Developments in 

micromechanics algorithms, finite element, and boundary element formulation for predicting effective material 

properties of piezoelectric composites are described. Finally, a brief summary of the approaches discussed is 

provided and future trends in this field are identified. 
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I. INTRODUCTION 

 

Piezoelectric material is such that when it is subjected to 

a mechanical load, it generates an electric charge. This 

effect is usually called the ―piezoelectric effect‖. 

Conversely, when piezoelectric material is stressed 

electrically by a voltage, its dimensions change. This 

phenomenon is known as the ―inverse piezoelectric 

effect‖. The study of piezoelectricity was initiated by J. 

and P. Curie in 1880 [1]. They found that certain 

crystalline materials generate an electric charge 

proportional to a mechanical stress. Since then new 

theories and applications of the field have been 

constantly advanced [2-10]. Voigt [2] developed the first 

complete and rigorous formulation of piezoelectricity in 

1890. Since then several books on the phenomenon and 

theory of piezoelectricity have been written. Among 

them are the references by Cady [3], Tiersten [4], Parton 

and Kudryavtsev [5], Ikeda [6], Rogacheva [7], Qin [8-

11], and Qin and Yang [12]. The first of these [2] treated 

the physical properties of piezoelectric crystals as well 

as their practical applications, the second [3] dealt with 

the linear equations of vibrations in piezoelectric 

materials, and the third and fourth [4, 5] gave a more 

detailed description of the physical properties of 

piezoelectricity. Rogacheva [7] presented general 

theories of piezoelectric shells. Qin [8-11] discussed 

Green’s functions, advanced theory, and fracture 

mechanics of piezoelectric materials as well as 

applications to bone remodelling. Micromechanics of 

the piezoelectricity were discussed in [12]. These 

advances have resulted in a great number of publications 

including journal and conference papers. These include 

but not limit to applications to Branched crack 

problems[13-15], experimental investigation of bone 

materials [16-21], multi-field problems of bone 

remodelling [22-29], decay analysis of dissimilar 

laminates [30], moving crack problems [31], anti-plane 

crack problems [32, 33], fibre-pull out [34], fibre-push 

out [35-37], problems of frog Sartorius muscles [38], 

effective property evaluation [39-42], Green’s function 

analysis [43-50], derivation of general solutions [51-55], 

boundary element analysis [56-63], micro-macro crack 

interaction problems [64], Trefftz finite element analysis 

[65-70], crack-inclusion problems [71, 72], crack growth 

problem [73, 74], multi-crack problems [75], crack-

interface problems [76-78], closed crack-tip analysis 

[79], crack-path selection [80], penny-shaped crack 

analysis [81, 82], logarithmic singularity analysis [83], 

multi-layer piezoelectric actuator [84, 85], Symplectic 

mechanics analysis [86], fibre-reinforced composites 

[87], interlayer stress analysis [88], coupled thermo-

electro-chemo-mechanical analysis [89], and damage 

analysis [90, 91].   

 

    Based on the analysis above, the present review 

consists of three major sections. Overall properties of 

three-dimensional (3D) are discussed in Section 2. 

Section 3 focuses on application of boundary element 

formulation to problems of piezoelectric materials for 

predicting effective material properties. Finally, a brief 
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summary on these sections is provided and areas that 

need further research are identified. 

 

II. METHODS AND MATERIAL 

 

I. Overall Properties of 3D Piezoelectric 

Composites 
 

This section is concerned with the development an 

algorithm used in two-dimensional (2D) analysis for 

calculating transversely isotropic material properties. 

Since the finite element (FE) meshing patterns on the 

opposite areas are the same, constraint equations can be 

applied directly to generate appropriate load. The 

numerical results derived using this model have found a 

good agreement with those in the literature. The 2D 

algorithm is then modified and improved in such a way 

that it is valid for three-dimensional (3D) analysis in the 

case of random distributed fibres and inclusions. Linear 

interpolation of displacement field is employed to 

establish constraint equations of nodal displacements 

between two adjacent elements. 

1.1 Constitutive equation, periodic condition, and 

meshing 

 

1.1.1 Effective constitutive relations 

 

For the transversely isotropic composite discussed this 

Section as shown in Figure 1, the effective constitutive 

relation of linear piezoelectricity, which is extensively 

used in the characterization of piezocomposites in this 

study, is defined as 
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  (1)
 

where σij is the stress tensor; Dm the electric 

displacement; Em the electric field; cij the elasticity 

tensor; κik the second order dielectric tensor; eik the 

piezoelectric constant, and a bar over a variable here 

stands for volume average.  

  

 

 

 

 

 

 

 

Figure 1: Schematic diagrams of periodic 1-3 composite 

laminate (a) and unit cell (b) (the fibre laminates are 

poled in x3 direction) 

 

The prediction of effective coefficients appeared in Eq 

(1) requires the adoption of periodic boundary 

conditions to generate appropriate loading. 

 

1.1.2 Periodic Boundary Condition 

 

As the homogeneous medium consists of periodic unit 

cells, periodic boundary conditions are required to apply 

on the boundaries of the RVE. The general periodic 

conditions expressed by Havner [12, 92] can be applied 

to ensure periodic displacement and subsequent stress 

field. 

 
( ) ( )

( ) ( )
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where ui denotes the displacement; y represents any 

point in the periodic domain and Y the periodicity. 

Applying this displacement condition to the boundary of 

the unit cell in Figure 1 yields. 

 

       ( , 1,2,3)j j

i iu u i j     (3) 

which means the three-dimensional displacement vector 

for any pair of corresponding locations on areas A-/A+, 

B-/B+ and C-/C+ should be the same. A more explicit 

periodic boundary condition is then given as[12] 

 iji j iu S x v   (4) 

where the average strain ijS  is included as an arbitrarily 

imposed constant strain; vi denotes the periodic part of 

displacement component, which depends on the global 

loadings. 
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Based on the boundary condition (4), a unified periodic 

boundary condition can be given [12]: 

 

 ( , , ) ( , , )  ( , 1,2,3)j j j

i i iu x y z u x y z c i j     (5) 

 

In the Eq. (5) above, for the constant terms on the right 

side of the equation, 
1

1c ,
2

2c  and 
3

3c  represent the 

normal loads which are either traction or compression; 

while, 
2 1

1 2c c , 
3 1

1 3c c  and 
3 2

2 3c c  represent the in-

plane shear load. 

 

1.2 2D FE Modelling 

Figure 1 illustrates the configuration of the homogeneity 

of continuous fibre reinforced 1-3 composite [10]. In 

this case, the cylindrical fibres are in square arrangement 

and poled along the x3 direction. This RVE 

configuration will be the focus in this section. 

1.2. 1 Element Type and Material Property 

SOLID226 in ANSYS element library is used, which is 

a 20-node hexagonal shaped element type with 3-D 

displacement degree-of-freedom (DoF) and additional 

voltage degree of freedom. This element type is easy for 

the implementation of periodic boundary conditions. 

And in the later development of 3D model, this element 

type will be suitable as the meshing method used for 

irregular model is only valid with tetrahedral element. 

The material properties inputs are taken from Berger et 

al. [93]. 

 

 
 

Figure 2: Different meshing density when volume 

fraction is 0.666. The RVE edge line is set into (a) 20 (b) 

40 divisions 

 

1.2.2 Element Mesh 

 

For meshing, the area geometry is generated first and 

then sweep mesh is used to further generate the volume. 

In this way, the meshing result on C+/C- is the same. In 

addition, with the setting of the RVE edge line divisions, 

meshing results on A+/A- and B+/B- are also the same. 

Ultimately, this provides explicit convenience to 

imposing periodic boundary conditions. As illustrated, 

when dealing with the situation when volume fraction is 

specified, say 0.666, the outline of the fibre circle is 

much closer to the RVE edge; in this case, a lower 

density of element as shown Figure 2 (a) is not sufficient 

for accurate analysis since the elements between the 

boundary of the RVE and the fibre have been lessened 

and shown distortion. When the edge division is 40 

indicated in Figure 2 (b), the meshing quality is 

significantly improved. 

 

As for periodic boundary condition, specific boundary 

conditions will be assigned to the exact opposite 

positions, namely A+/A-, B+/B- and C+/C-. For 

example, in x-direction 

 

 ( , , ) ( , , )A A

i j j i k ku x y z u x y z c    (6) 

 

where the subscripts j and k are the node number of any 

pair of nodes on opposite locations, A+ and A- area, 

respectively. The boundary conditions are shown in 

Figure 3. 
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Figure 3: Application of periodic boundary conditions 

from a coordinate’s view 

 

Since the meshing scheme has ensured that there exists a 

pair of corresponding nodes at the opposite positions, 

the problem lies in developing a method to apply 

constraint equations on each pair of node for 

overcoming the problem of time-consuming over the 

node pair selection by graphical users’ interface. An 

internal programme has thus been designed for 

accomplishing the task. The procedures of the 

implementation are described as follows: 

 

a) Define the area A+, B+ and C+ as master areas, while 

A-, B- and C- as slave areas. Establish two arrays 

containing the node number (j, k) and coordinates (yj,k, 

zj,k) of each node (the x coordinate is not necessary, 

because the nodes are located on A+ and A- areas where 

the x coordinate is a constant). 

b) Start from the first node in master array; get the node 

number j; 

c)Use the coordinates (yj, zj) of the node j to find the 

node at the exact opposite location, yj=yk; zj=zk; and 

select the node k from the slave array. 

d)Given the node number of the nodes on opposite 

location, constraint equations could be established. 

The same procedures are adopted on B+/B- and C+/C- 

areas, whilst the coordinates obtained and stored will be 

X/Z and X/Y, respectively. 

    

When integrating the constraint equations in three 

directions, special care has been taken to avoid over-

constraint over the edges that connect areas A+/A-, 

B+/B- and C+/C-. Over-constraint may occur when the 

degree-of-freedom of one node is specified more than 

once. For example, when applying x-y in-plane shear 

load via constraint equations as shown in Figure 4, based 

on the periodic boundary conditions for A+/A-, the DoF 

relations between node 1 and 2 are u2=u1 and v2=v1+c 

while as to areas B+/B-, there will be relations between 

nodes 2 and 3 that u2=u3+c and v2=v3; the same problem 

will also occur in node 3. In this case, when applying 

constraint equations over B+/B-, the corner nodes of the 

RVE will be excluded to avoid over-constraint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Over-constraint situations for 2-D mode 

 

II. RESULTS AND DISCUSSION 
 

1. Numerical results of effective coefficients 

 

Proper boundary conditions with strain load are 

specified pertaining to the calculation of different 

coefficients. For example, for the calculation of c11 and 

c12, the boundary conditions are applied in such a way 

that, except for the average normal strain in x direction 

ε11, all the other mechanical and electric strain 

components are set to be zero. By this means, in Eq. (1), 

stiffness tensor c11 and c12 can be derived by 

 

 11 1111= effc  ; 22 1112= effc   (7)
 
 

 

Practically, this is achieved by setting the x-

displacement on A-, y-displacement on B+/B- areas, and 

z-displacement on C+/C- areas to be zero; electric field 

on all areas to be zero. If we adopt periodic boundary 

conditions discussed before to A+/A-, where ux(A-) =0, 

the periodic boundary condition in Eq. (5) is simplified 

to 

 ( , , )A A

x xu x y z c   (8) 

 

which indicates that all nodes on A+ area will present a 

displacement c in x+ direction. The calculation of other 

coefficients follows a same routine. 
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The numerical results obtained are shown in Figure 5 

and compared with the FE results from Berger et al. 

[93]. The blue curve shows the data results from this 

work and the pink curve as the results in Berger et al. 

[93]. The curves shown in Figure 5 indicated a good 

match pertaining to elastic tensors, except for c44 when 

the fibre volume fraction exceeds 0.444. Since the 

calculation of c44 is highly dependent on the out-of-plane 

shear strain ε23, and the implementation of such strain 

requires the original form of periodic boundary 

conditions rather than a normal displacement applied on 

one area when calculating c11, c12, c13 and c33, the 

accuracy of c44 is significantly dependent on the 

meshing density than others. 

 

 c11 [N/m
2
] 

 c12 [N/m
2
] 

 c13 [N/m
2
] 

 c33 [N/m
2
] 

 c44 [N/m
2
] 

Figure 5: Numerical results of effective coefficients 

 

2. Boundary elements for piezoelectric materials 

2.1 Green functions for a hole embedded in an 

infinite piezoelectric solid 

 

Consider a hole embedded in an infinite piezoelectric 

solid subjected to a line temperature discontinuity  

located at a point (x10, x20). Green functions for such a 

problem have been given in [45]. They are: 
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where T, , u and  represent temperature, heat-flow 

function, EDEP and SED function vectors, respectively. 

i= 1 , ―Re‖ represents the real part of a complex 

number, 
T}   {

4321
 , P = diag [p1 p2 p3 p4],  

and pk are heat and electro-elastic eigen values of the 

materials whose imaginary parts are positive. 

2
122211 kkkk  , where kij is the thermal conductivity, A, 

B, c and d are the material eigenvector matrices and 

vectors which are defined in the literature (see [10], for 

example). k and t are related to the complex variables 
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where e i j e i jij ij   1 0 if ;   if ,  0 < e  1, n is an 

integer and has the same value for both subscript and 

argument of the functions.  and a are real parameters. 

By an appropriate selection of the parameters e, n and , 

we can obtain various kinds of cavities or holes, such as 

ellipse (n=1), circle (n=e=1), triangular (n=2), square 

(n=3) and pentagon (n=4). The functions f0, f1, 

t
g and  ,

21
FF  can be found in [8]. With the above 

solutions, the heat flow hi and SED i ( 

{ } )  1 2 3i i i i

TD   are calculated by the relations: 

h h1 2 2 1 1 2 2 1      , , , ,, ,,               (16) 

where hi, ij and Di are, respectively, heat flow, stress 

and electric displacement. 

 

2.2 BEM for thermopiezoelectric problem 

 

Consider again a 2D thermopiezoelectric solid inside of 

which there exist a hole and a number of cracks with 

arbitrary orientation and size. The numerical approach to 

such a problem usually involves the following steps. (i) 

Solve a heat transfer problem first to obtain the steady-

state T field. (ii) Calculate the electroelastic field caused 

by the T field, then plus an isothermal solution to satisfy 

the corresponding mechanical boundary conditions. (iii) 

Finally, solve the modified problem for electroelastic 

fields. Unlike in the finite elements [94-105], we need to 

discretise the boundary only.  In what follows, we begin 

by deriving the variational principle for temperature 

discontinuity and then extend it to the case of thermo-

electroelasticity. 

 

 
2.2.1 BEM for temperature discontinuity problem 

 

Let us consider a finite region 1 bounded by (=

 h T ) , as shown in Fig. 6(a). The heat transfer 

problem to be considered is stated as: 

k Tij ij,  0                                   in 1                   (17) 

h h n hn i i  0                           on h                    (18) 

T T 0                                      on T                    (19) 

0iinh                                    on L                       (20) 

where ni is the normal to the boundary , h T0 0 and  are 

the prescribed values of heat flow and temperature, 

which act on the boundaries  h T and , respectively. 

For simplicity, we define  
LL

TTT̂  on L 

(=L
+
+L

-
), where T  is the temperature discontinuity, L is 

the union of all cracks, L L  and   are defined in Fig. 

6(b). It should be pointed out that the boundary 

condition along the hole is automatically satisfied due to 

the use of the Green function given in Eqs. (9) and (10). 

Naturally, the hole boundary condition is not involved in 

the following analysis. 

 

Further, if we let 2 be the complementary region of 1 

(i.e., the union of 1 and 2 forms the infinite region ) 

and T T T T     0 , the problem shown in Fig 

4(a) can be extended to the infinite case (see Fig. 6b). 

Here 
  , where 

- and 
 stand for the 

boundaries of 1 and 2, respectively [see Fig. 6(b)]. In 

a way similar to that in [8], the total generalised 

potential energy for the thermal problem defined above 

is given by: 

P T T k T T d h TdLij i j n( ,  ) 
, ,  

1

2


 
                   (21) 

By transforming the area integral in Eq. (21) to a 

boundary integral, we have 

Figure 6. Configuration of the plate 
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and the temperature discontinuity is assumed to be 

continuous over L and zero at the ends of L.  Moreover, 

temperature T in Eq. (22) can be expressed in terms of 

T  through use of Eq. (9). Therefore, the potential 

energy can be further written as 

P T T T ds h Tdss
L
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2
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The analytical results for the minimum of potential (24) 

is not, in general, possible, and therefore a numerical 

procedure must be used to solve the problem. As in 

conventional BEM, the boundaries  and L are divided 

into a series of linear boundary elements for which the 

temperature discontinuity may be approximated by a 

linear function. To illustrate this, take a particular 

element m, which is a line connected by nodes m and 

m+1, as an example (see Fig. 7) 

)(ˆ)(ˆ)(ˆ
11 sFTsFTsT mmmm   (25) 

where Tm  is the temperature discontinuity at node m, 

and functions Fm(s), Fm+1(s) are shown in Figure 7. 
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in which t0 can be expressed in terms of s by the 

relations 
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and d x xm m m 1 2 ,  ( , )x xm m1 2  is the coordinates at 

node m, m  is the angle between the element m and x1

-axis, 1m  is defined similarly. It should be pointed out 

that the solution of t0 in Eq. (30) is multi-valued, as 

there exist n-roots located outside the unit circle [46]. 

The root whose magnitude has a minimum value is 

chosen in our analysis [46]. 

 

Using Eq. (26), the temperature at node j can be written 

as 
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Substituting Eq. (25) into Eq. (24) yields 
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where Kmj is known as the stiffness matrix and Gj the 

equivalent nodal heat flux vector, which are given by: 
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The minimization of )ˆ(TP  yields 
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The final form of the linear equations to be solved is 

obtained by selecting the appropriate ones, from among 

Eqs. (32) and (36). Eq. (32) will be chosen for those 

nodes at which the temperature is prescribed, and Eq. 

(36) for the remaining nodes. After the nodal 

temperature discontinuities have been calculated, the 

EDEP and SED at any point in the region can be 

evaluated by using Eqs. (11), (12) and (16). They are 
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where 

Figure 7. The definitions of Fm(s) and Fm+1(s) 
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Thus, the surface traction-charge and EDEP induced by 

the temperature discontinuity are of the form 
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In general, 0)(0 snt  over t (the boundary on which 

SED is prescribed) and 0)(0

* su  over u (the 

boundary on which EDEP is prescribed). To satisfy the 

SED (or EDEP) on the corresponding boundaries, we 

must superpose a solution of the corresponding 

isothermal problem with a SED (or a EDEP) equal and 

opposite to those of Eq. (41). The details will be given in 

the following sub-section. 

 

22.2 BEM for EDEP Discontinuity Problem 

 

Consider again the domain 1, the governing equation 

and its boundary conditions are described as follows 
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where  t u and  are the boundaries on which the 

prescribed values of SED ti

0
 and EDEP ui

0
 are 

imposed,  and ijij )( . Similarly, the total 

potential energy for the electroelastic problem can be 

given as 
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where the elastic solutions of the functions (  )u  and 

u u(  )  have been given in [46]. These solutions are: 
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where  

 
]1,0,0,0[diag      ],0,1,0,0[diag

   ],0,0,1,0diag[   ],0,0,0,1[diag

43

21





II

II
  (49) 

 

As before the boundaries L and  are divided into a 

series of boundary elements, for which the EDEP 

discontinuity may be approximated through linear 

interpolation as  
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With approximation (50), the EDEP and SED functions 

given in Eqs. (47) and (48) can now be expressed by 
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in which t and t0 can be expressed in terms of s by the 

relations 
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      In particular the displacement at node j is given by 
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Substituting Eq. (44) into Eq. (39), we have 
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and 
0

nj tG   when node j is located at the boundary 

L, 
00

nj ttG   for other nodes. The minimization of 

Eq. (57) leads to a set of linear equations 
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Similarly, the final form of the linear equations to be 

solved is obtained by selecting the appropriate ones, 

from among Eqs. (56) and (60). Eq. (56) will be chosen 

for those nodes at which the EDEP is prescribed, and 

Eq. (60) for the other nodes. Once the EDEP 

discontinuity u  has been found, the SED at any point 

can be expressed by: 
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Therefore the SED, n, in a coordinate system local to 

the crack line, is given by 

 T
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where )(  is defined by[4] 
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Using Eq. (62) we can evaluate the SED intensity factors 

by the following definition 
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We can evaluate the SED intensity factors in several 

ways: by extrapolation, traction and J-integral formulae 

[15]. In our analysis, the first method is used to calculate 

the SED intensity factors in BEM. Here, n at any two 

points (say A and B) ahead of a crack-tip is first derived 

and then substituting them into Eq. (64), we obtain 
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where rA (or rB) are the distance from crack-tip to point 

A (or B). Finally, the SED intensity factors K can be 

obtained by the linear extrapolation of K
A
 and K

B
 to the 

crack tip, that is 
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III. CONCLUSIONS AND FUTURE 

DEVELOPMENTS 

 
On the basis of the preceding discussion, following 

conclusions can be drawn. This review presents an 

overall view on evaluating overall properties of 

piezoelectric composites. It includes micromechanics 

calculation, boundary elements and finite element 

modeling.   

 

It is recognized that study on piezoelectric materials 

becomes a hot topic and has become increasingly popular 

due their widely applications in engineering fields. 

However, there are still many possible extensions and 

areas in need of further development in the future. 

Among those developments one could list the following: 

 

1. Development of efficient Trefftz finite element-

boundary element method schemes for complex 

piezoelectric structures and the related general 

purpose computer codes with preprocessing and post 

processing capabilities. 

2. Applications of piezoelectric composites to MEMS 

and smart devices and development of the associated 

design and fabrication approaches.  

3. Extension of the Trefftz-finite element method to 

electrodynamics of piezoelectric structures, 

dynamics of thin and thick plate bending and fracture 

mechanics for structures containing piezoelectric 

sensor and actuators. 

4. Development of multistate framework across from 

continuum to micro- and nano-scales for modeling 

piezoelectric materials and structures. 
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