Structural, Morphological, Electrical Properties of Mg and Sr Doped Ceria
Koteswararao P*a, M. Buchi Sureshb, Syed Ismail Ahmedc, B. N. Wani d, P. V. Bhaskara Rao e

aCentre for Nano Science and Technology, Jawaharlal Nehru Technological University, Hyderabad, Andhra Pradesh, India.
bCenter for Ceramic Processing, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, Andhra Pradesh, India.
cDepartment of Basic Sciences – Physics Division, Ibn Sina National College, Jeddah, Saudi Arabia, Chemistry Division, Saudi Arabia.
dBhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India.
ePhysics Department, St. Mary’s Engineering College, Dhemukhi, R.R (DT), Hyderabad, Andhra Pradesh, India.

ABSTRACT

This paper reports the Strontium and Magnesium doped Ceria solid solutions (Ce0.99Sr0.01O1.995 and Ce0.99M0.01O1.995) were synthesized by solid state reaction method. The doped and undoped CeO2 samples were sintered at constant Temperature 1400 °C to investigate their density, structural, morphological, electrical properties. The sintered densities of the samples are above 90%. XRD study reveals the cubic fluorite structure. SEM reveals that the synthesized samples the grains formed are of different size. The grain size depends on sintering temperature and of doping. The EDS spectra show that the samples are free of contaminants. FTIR study reveals well agreement with YSZ: Doped ceria, relative density, XRD, SEM, EDS, SOFC.

Keywords: Doped ceria, relative density, XRD, SEM, EDS, SOFC.

I. INTRODUCTION

Ceria based materials have been used as catalyst supports, CO reduction catalysts and solid oxide fuel cell (SOFC) Electrolytes because of its special properties than conventional Yettria Stabilized Zirconia (YSZ) such as high thermal stability, oxygen storage capacity and ion conductivity.[1-4]. YSZ Commonly used as an electrolyte for Solid oxide fuel cell(SOFC) at high temperatures 1000°C which offers high cost, less cell operation life. Mainly Ceria based materials are used for reduction of operating temperatures below 600°C for Intermediate temperature SOFC. when Alivalent Cations (Ca2+, Sr2+, Ba2+, Y2+, Ln3+, Sm3+, Gd3+, Nd3+, doped with ceria shows strong candidate for electrolyte for SOFC because its ionic conductivity with low activation energy and its Stability from Room temperature to its melting temperature (2300°C) in addition that ionic radius of ceria matches (Sm3+, Gd3+, Etc) which creates vacancies leads increase ionic conductivity and less phase instability than un-doped ceria.[5]

\[2\text{CeO}_2 \rightarrow 2\text{M}_{\text{Ce}} + 3\text{O}_0 + \text{V}_0 \] \hspace{3cm} (1)

\[\text{CeO}_2 \rightarrow \text{M}_{\text{Ce}} + 2\text{O}_0 + \text{V}_0 \] \hspace{3cm} (2)

Where the symbols are used in accordance with Kroger Vink notation of defects. M\text{Ce} stands for a trivalent ion on Ce 4+ site, M\text{Ce} stands for a divalent ion on Ce 4+ site V_0 is oxygen vacancy with doubly positive effective charge and O_0 represents that oxygen ion on O 2- site being neutral. Rare earth oxides have high solubility in ceria. JadHAV et al. [6] studied the Ce1-xGdxO2-x/2 (x = 0.30) system which was synthesized by glycine–nitrate process and they found single phase formation in this system and the grain growth of sintered samples was observed to hindered with an increase in Gd content.
Kim et al. [7] studied the scavenging effect of SrO. It reacts with SiO$_2$ and the resultant material gathers at triple point junction of the grain boundaries. This reduces the grain boundaries resistance. However, only a few reports on MgO doped ceria exist in the literature. Limited solubility of MgO in ceria has been reported to be due to difference in ionic radius of Ce$^{4+}$ (0.97 Å) and Mg$^{2+}$ (0.89 Å). Solubility of SrO in ceria is between 5 and 10 Mol% for similar reason (ionic radius of Sr$^{2+}$ is 1.26 Å) [8]. Ceria doped with alkali earth metals such as CaO and SrO has been studied extensively [9, 10]. Ceria solid solutions with formula Ce$_{1-x}$M$_x$O$_{2-\delta}$, where M is rare earth metal or lanthanides shows more open structure and more oxygen ion conductivity and are potential candidates as electrolyte for IT-SOFC [11, 12].

In order to explore simple and cheaper synthesis method of SOFC electrolyte and to study the structural, Morphological, Electrical Properties of undoped and Mg and Sr doped ceria, some samples have been prepared and investigated.

II. METHODS AND MATERIAL

2. Experimental

2.1 Sample preparation:

Commercially available powders of CeO$_2$, MgO and SrCO$_3$ (AR grade Sigma Aldrich USA, 99.9% purity) were used as starting materials. The powders of CeO$_2$ and SrCO$_3$ were mixed in appropriate stoichiometric proportion to make (1 mole %) Ce$_{0.99}$Sr$_{0.01}$O$_{1.995}$ composition. The mixture was grinded in agate and mortar to get a homogenized powder. The powder was calcinated at 800°C for 2 hours for decomposition of SrCO$_3$ and re ground. 2 mole% of polyvinylpyridine was added to the powder as binder and was mixed thoroughly. The powder sample was uni axially pressed by a pressure of 10 tons/ sq inch to get a disc shaped pellets. Similarly Ce$_{0.99}$Mg$_{0.01}$O$_{1.995}$ and undoped CeO$_2$ pellets were prepared. The prepared pellets were sintered at 1400°C for 2 hours in air at ramp of 2°C/minute and cooled to room temperature by the same ramp. The prepared un-dopes CeO$_2$, Sr doped and Mg Doped pellets were identified as CE14, SC14 and MC14 which have been sintered at temperature 1400°C used for characterization, results and discussion.

2.2 Characterization:

2.2.1 Density

The bulk densities (d_b) of sintered samples were measured by Archimedes principle method. The theoretical densities were measured by formula

$$d_b = \frac{4}{A^3N_a}[0.99M_c + 0.01M + 1.995M_o]$$

Where, Mc and Mo and ‘M’ are atomic wt. of ceria, oxygen and the dopants Sr and Mg, and A is lattice parameter.

2.2.2 Structure and morphology

The phase and structural properties of the sintered pellets were studied by powder X-ray diffraction (XRD) using Cu Kα radiation (λ=1.54 Å) radiation source at 40 kV and 30 mA. The crystalline size ‘D’ was measured by Scherrer’s formula

$$D = \frac{0.94\lambda}{\beta \cos \theta}$$

where β is FWHM of the peak and θ is Bragg angle. The Lattice parameter was calculated by using relation

$$a = d\sqrt{h^2 + k^2 + l^2}$$

The sintered pellets were polished and gold coated for microstructure analysis using a scanning electron microscope (ZEISS Evo series SEM) at operating voltage 15 kV) equipped with an energy dispersive X-ray spectrometer (EDX) analyzer. The surface morphology was characterized by Scanning electron microscopy. The grain size was measured from higher magnification SEM micrographs.

2.2.3 Impedance: The AC impedance spectra of the samples (CE-14, MC-14, SC-14) were recorded using Agilent precision impedance analyzer (4294 A) as a function of temperature (300–700 °C) in air in a measuring frequency range from 40 Hz to 1 MHz. Silver paste was brushed to each side of the samples, which was subsequently dried at 600 °C for 20 min, producing solid silver electrode on both sides of the pellet.

III. RESULTS AND DISCUSSION

Table 1 gives the relative densities of samples sintered at 1400°C temperatures. It is observed that the substitution of Sr in ceria leads to increase in
the density of ceria solid solution. The relative density is about 93% of theoretical density at temperature 1400°C for Ceria and 94% for strontium doped Ceria. The substitution and increase in the content of Sr in ceria [13] However in the case of Mg doped ceria (MC-14) no great change in density has been observed, probably because of its size mismatch and lesser atomic wt. Mg(0.79Å) and Ce(0.97Å). It is evident from Fig 1.a)

Table-1 Sample identification and densities

<table>
<thead>
<tr>
<th>Sr no.</th>
<th>Sample Code</th>
<th>Temperature (°C)</th>
<th>Composition</th>
<th>(d_m) (g/cc)</th>
<th>(d_0) (g/cc)</th>
<th>% relative density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE 14</td>
<td>1400</td>
<td>CeO₂</td>
<td>6.680±0.022</td>
<td>7.186</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>SC 14</td>
<td>1400</td>
<td>Ce₀.₉₃Sr₀.₀₇O₁₉₅</td>
<td>6.591±0.027</td>
<td>7.013</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>MC 14</td>
<td>1400</td>
<td>Ce₀.₉₀Mg₀.₀₁O₁₉₅</td>
<td>6.550±0.021</td>
<td>7.122</td>
<td>92</td>
</tr>
</tbody>
</table>

Figure 1. a) Relative density Vs. composition
b) XRD patterns of Ce-14, SC-14, and MC-14
c) Lattice constant Vs. composition
d) crystallite size Vs composition

b) shows X-ray diffraction patterns obtained for CE14, SC14 and MC14 are shown in Fig3. All the samples were in single phase fluorite structure. The results were compared with JCPDS card no. 81-0792. The samples shows the presence of (111) (200) (220) (311) (222) (400) and (331) diffraction peaks in the scanning range of 2\(\theta\) = 20 - 90° . The crystalline size and lattice parameters were calculated using eq (2) & eq (3) Table-2 Lattice parameters, grain size and crystallite size of samples sintered at 1400⁰ C. It is evident from Fig 1.b), the (111) diffraction peak shifts angle due to Mg and Sr comparing to Pure ceria due to mismatch of Ionic Radius Ce (0.97Å) and Sr (1.21Å) than Mg(0.97Å). The lattice parameters increased for Sr doped ceria due to Sr Ionic radius is greater than Ceria as result Lattice expansion take place comparing MC-14(It is evident from Fig3.c). The deviation of lattice parameter \(\Delta a (\Delta a = |a_{CE} - a_{doped}|)\) from undoped ceria CE14 was found maximum (0.008) for CS14 and minimum for MC14 as shown in Fig.3.d). The crystal size ranges from 29 to 21 nm was observed.

The micro structures of the sintered pellets are shown in the Fig 5. No pores are observed in high temperature sintered sample which is consistent with their measured densities. The linear intercept method was applied and higher magnification micrographs were used to measure the grain sizes. The average grain size for CE14 was 5.5 μm and that of SC14 was 3 μm. It is evident that the, substitution of Sr in Ceria lattice decreases the grain size which may be due to mismatch of size of atomic radii of Ce⁺⁺⁺ and Sr⁺⁺. But in case of Mg doped ceria the grain size (6.3 μm) increases, it could be due to \(r_{Mg} (0.72A) < r_{Ce} (0.96A)\).

Table-2. Lattice parameters, grain size and crystallite size of samples sintered at 1400⁰ C

<table>
<thead>
<tr>
<th>Sr no</th>
<th>Sample</th>
<th>Crystallite size (nm)</th>
<th>Lattice parameter (Å)</th>
<th>Grain Size (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE-14</td>
<td>29.08</td>
<td>5.419</td>
<td>5.5</td>
</tr>
<tr>
<td>2</td>
<td>SC-14</td>
<td>24.08</td>
<td>5.427</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>MC-14</td>
<td>21.11</td>
<td>5.417</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Microstructure:

Figure 2. a) (A,D) SEM,EDAX of CE-14,b)(E) SEM,EDAX OF SC-14,c)((C,E) SEM ,EDAX OF MC-14
FIG-2 Shows micro structures of the sintered pellets are shown in the Fig 4. All samples shows homogenous and less porosity observed which is consistent with their measured densities. The linear intercept method was applied and higher magnification micrographs were used to measure the grain sizes. The grains observed were of varying size. The average grain size for CE14 was 5.5 μm and that of SC14 was 3 μm. It is evident that the substitution of Sr in Ceria lattice decreases the grain size which may be due to mismatch of size of atomic radii of Ce$^{4+}$ and Sr$^{2+}$ and Sr acts as a grain growth inhibitor. Grain boundaries are regions of high energy because of disordered present in them. Therefore, the dopant ions can be accommodated in the grain boundaries with minimum expenditure of extra energy i.e dopants tends to segregate to the grain boundaries. This needs, however, to be confirmed using EDAX. The reason for increasing the grain size for the sample CM14 is not clear. But in case of Mg doped ceria the grain size (6.3 μm) increases, it could be due to r_{Mg} (0.72Å) $< r_{Ce}$ (0.96Å). However as sintering temperature increases an increment in the grain size was observed.

FTIR:

![FTIR spectrum](image)

Figure 3. FTIR spectrum of pure CE-14, MG-14, SC-14

The observed band positions are in good agreement with the earlier reported values on similar systems [14]. The FTIR spectrum of the ceria exhibits strong broad band at 720 cm$^{-1}$ due to the δ (Ce–O–C) mode. The peaks at 2348 and 2920 cm$^{-1}$ are due to the CH$_2$ vibrations. In the FT-IR spectrum the peaks at about 1542, 1256, 1160 and 1028, cm$^{-1}$ are similar to those of commercial CeO$_2$ powders and CeO$_2$ nano particles 720, 1028, 1160, 1256, 1461, 1542, 1645, 1806, 2348, 2855, 2920, 3360 The characteristic absorption band of CeO$_2$ is observed at 1461 cm$^{-1}$, which was attributed to the stretching vibration of Ce-O. The broad absorption band around 3430 cm$^{-1}$ is designated to O–H stretching mode of hydroxyl group and another broad peak at 1645 cm$^{-1}$ is also due to δ (OH) vibration. [15].

Electrical Properties

A.C. impedance spectroscopy is an important tool to study the electrical properties of solid electrolytes and to study the grain, grain boundary and electrode contribution to the overall ionic conductivity. High frequency semi-circle corresponds to grain resistance (R_g), intermediate frequency semi-circle corresponds to grain boundary resistance (R_{gb}) and low frequency incomplete arc corresponds to electrode resistance (R_e). In general, the total conductivity (σ_t) of rare-earth element doped ceria is the sum of ionic conductivity (σ_i) and electronic conductivity (σ_e). The main contribution of the conductivity of ceria-based compounds in air is the ionic conductivity and contribution of the electronic conductivity is negligible ($\sigma_i \approx 10^{-2}$ S/cm; $\sigma_e \approx 10^{-5}$ S/cm < 800 °C).

In general, the total conductivity (σ_t) of rare-earth element doped ceria is the sum of ionic conductivity (σ_i) and electronic conductivity (σ_e). The main contribution to the conductivity in ceria-based compounds in air is the ionic conductivity and contribution of the electronic conductivity is negligible ($\sigma_i \approx 10^{-2}$ S/cm; $\sigma_e \approx 10^{-5}$ S/cm < 800 °C). The contributions by grain, grain boundary and electrode to the overall ionic conductivity can be estimated by recording ac impedance spectrum. The sample total resistance, R_t can be obtained from impedance spectroscopy at different temperatures as,

$$R_t = R_g + R_{gb}$$

The total electrical conductivity σ was then calculated using equation,

$$\sigma_t = \frac{1}{R_t} * \frac{l}{A}$$

Where is l is the thickness, A is the cross sectional area of the sample.
The conductivity was then calculated from resistance, thickness l, and cross-sectional area A, samples by using this formula $\sigma = \frac{L}{RA}$.

Sectional area A, samples by using this formula $\sigma = \frac{L}{RA}$.

The respective values of the conductivities at different temperatures are given in the Table 3. From above table it is observed that after doping Mg and Sr shows higher than Pure ceria due increasing of oxygen vacancies in Pure ceria crystal Lattice.

Increasing of conductivity or decreasing of conductivity depends on due following reasons:

1. Due to doping of Sr of Mg configurationally entropy originates. Due to Partial substitution of Mg or Sr in CeO$_2$, Ordering of oxygen vacancies is suppressed. This leads to decrease in the activation energy for migration of O$^{2-}$ ions leading to increase in the conductivity.

2. Secondly, on substitution of Sr$^{2+}$, binding energy of oxygen decreases as compared to that in CeO$_2$. This decreases the activation energy for diffusion of oxygen ion leading to increase in conductivity.

3. Number of associated defects pairs increases with increase in Sr$^{2+}$ substitutions. This leads to decrease in the ionic conductivity. Lattice parameter increases with increasing concentration of Sr$^{2+}$.

This increases elastic strain in the lattice leading to an increase in the activation energy for diffusion of O$^{2-}$ ions. This causes a decrease in the conductivity.

IV. CONCLUSION

Doping of Sr and Mg to ceria leads to change in densities, lattice parameter and grain size. The alkali earth metals can be used as sintering aid in ceria. XRD analysis reveals cubic fluorite structure. The grain size of cerium oxide decreases with the doping of Sr than Mg Doped ceria. All samples shows above 90% Density at 14000 C Sr Doped Ceria and Mg Doped Ceria shows maximum Conductivity than Pure ceria observed. However increasing temperature conductivity shows increasing linearly.

V. ACKNOWLEDGEMENTS

The Author is gratefully thanking to the “UGC-DAE CSR Mumbai Centre for providing sintering facility for my samples” and also thank ful to Dr. Manojkothwale for his valuable suggestions.

VI. REFERENCES

