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ABSTRACT

In this paper, we present a parameter expansion method for two-point nonlinear singularly perturbed boundary value
problem for second order ordinary differential equation. Newton linearisation scheme is used to linearise the

nonlinear problem.
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I. INTRODUCTION

Consider a nonlinear singularly perturbed second
order boundary value problem G,, defined by

G,, =ey"()-fx,y,y,e)y(x)=0, a<x<b
1)

y@se)=a )

y(b,s) =g ©)

for small positive values of the parameter ¢,
satisfying 0 < ¢ < g, for some &,, while a,b,¢,

are independent of &,.

The Newton’s scheme for Taylor’s series expansion
given by

G+AYy—+Ay'—+AYy"— =0 (4)
oy

will be used throughout this work.

Thus, from (1), we obtain the following
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Substituting (5) into (4), we have
of of
Gy + Ay, E_yk (3yy:j+Ay'k [_( f =Y (3}/:(]+Ay"k (e)=0
(6)
where Ay, (x) =y, (x) =y, (x)

The Newton’s linearisation leads to the use of the
following iteration;

5y"k+1(x)_[fk +Y' (X a(;y(.X)Jy'kﬂ(X)_[y'k nyykJqu(X) =

k k

o, of
eY' () =Y Y () ——-y' (X) — -G,

Y, Y
(7)
Yo (a,2) = 6 ©)
Yea(b,2) = ©

The Method of Parameter Expansion

The method seeks an asymptotic expansion based
on the idea of Okoroet al [1], which converts the
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singularly perturbed problem to a system of
ordinary differential equations for which the
solutions are relatively easier to obtain. The
ordinary differential equations are reduced to
algebraic equations using the perturbed collocation
method described in [1]. In order to solve (7) with
this method, we seek a patched solution in two

regions, namely the boundary layer region I,

and outside the boundary layer region 1, ,, where

I ={x:G<x<b}=lyg ls,
Without any loss of generality, we set

{x:a, <x<b}

={x:a, <x<h,}

I OBL

IBL
Where a<a <b =a, <b, =b

In the region log., we seek a smooth collocation
solution of the form y,  (x) and in the region IBL,
we seek the parameter expansion y,, (x,&) . In the
smooth solution, let,

Yn (=2 ax™ a <x<b (10)

satisfies exactly the slightly perturbed collocation
equations

a7 Mk
o

k

af Nk
gy"N‘kal(Xi)_[fk + yIN‘k+l(Xi)af)]le‘kJrl(xi)_[y'N‘k (Xl)yJ yN,k+l(Xi) =

yNk

ayiw* yIN,k (X)[ fk + le,k(X)

gy"N‘k+1(X)7yN‘k(X|)y‘N,k(x) ]Gk JrHN(X|)

N (12)

HN(Xi): ZZ:tLNT *N—K (Xi); a<x<b (13)

And

T* (%) =Ty(2% -1); a<x<b (14)

is the shifted Chebyshev polynomial, and
t,, (k =1,2) are arbitrary constants to be determined

and

Tn (x) = cos[N arccos(x)]; N> 0,
The zeros of T * (X) are given by

['1’ 1]

1 . 2R .
X :2[(a+b)—(a—b)cos((21—1)2ND, j=L...,N

Also, vy, , (x) must satisfy the arbitrary conditions

Yin (a,e)=¢ (15)
and
Yin (b,e)= Yom (@,,¢)

(16)

The Chebyshev perturbation (14) is well-known to
yield an accurate approximation.

On substituting (10) in (11) we obtain N collocation
equations. Two extra equations are obtain using (15)
and (16).

Altogether, we have (N + 2) collocation equations
which give  the unique  values of
8y,8y,...,Ay, 4, and x4, ,. Also, inside the boundary

layer region I, , we seek a uniform valid parameter
expansion in the form.

N
Yo (X, €) = Z g, (X&' a, <x<b,
i=1

(17)

which satisfies the following perturbed two-dimensional form of equation (7)
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+ p(X)ayZMG—)((X,g) + q(x)yz,M (X,€) +G (X, &) = Hz,M X, €) (18)

(x)——[f '(x)ﬂ} (x)——('(x)%]
p - kyk 6yk 1 q - yk ayk

k

0 Yom (%)
g—
Ox?
where

2
Hyw (X&) = 11, T *y 4 (6); @, <x<b,
k=0
Also, Y, (x,&) must satisfy the following conditions

Yam (ay,¢) = Yin (b,)
Yom (b, )= p (19)

and

Yom (%,1) = #(X)
Yom (%, 0) = £(x) (20)

where ¢(x)and &(x) are obtained from (1) when ¢ =1 and when ¢ = 0 respectively.

Collocating equation (19) at points &, , we obtain

Y, (X&) Nom (X&)
& % + p(x)% + q(X)yz,M (X&) +G (X&) = H, &) (21)
where
g = 1=1,2,..., M+ (22)
M+2

Thus, we obtain (M + 1) second order ordinary differential equations in (M + 3) unknown functions, gi(x),
92(%), 93(X), - - ., Gm (X), 42,1 and Wz

The arbitrary p-functions are then eliminated to give a set of (M - 2) second order ordinary differential
equations. Two extra equations are obtained using (19). Altogether, we have M second order ordinary
differential equation. The M second order ordinary differential equations are then perturbed and collocated
in the same manner as in (11). Equations (20) are satisfied at the Chebyshev points x; (i=1,2,3,..., M).
These equations together with (12), (15) and (16) give the values of the constants a;, gi; (1=1,2,...,N ;]
=1,2,..., M) for the required approximation.
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N .
Y1,N(X):Za1XI71; aigxgbl
i=1

M . .
y(x) [ Yn (x) = yZ,M(Xig): Zgjixl_lgj_l ;8 < Xsz
j=1

A Worked Example consider the nonlinear second order bvp

ey"(X)—-yx)y'(x)=0, -1<x<1

With the boundary conditions

y(-1) = —tanh (ﬂj and
&

y(1) = tanh (ﬂj
&

The analytical solution is given by

y(X) = tanh [ﬂJ
&

The Newton’s iterates using (7) on (5) are given by

5y"N,K+1(X’5) — Yk (Xig)le,Ku(X’g) —Ynk (X’g)yN,K (X&) = —Ynk (X’g)le,K (X, &),

and

YN ka1 (_11 g) = —tanh (ﬂj
&

Vol €)= tanh(fj
E

For K =0, the initial approximation used is

Yn ok (x) = tanh (ﬂj
&

Table 1: Error Estimates for Case N =5, M =4

Standard collocation | Parameter Expansion
tau method Method

10" 1.516 x 10" 1.516 x 10"

10~ 1.824 x 10 2 2.053 x 10 "2
10~ 1.939 x 10 3 5.281 x 10 "*
10~ 2.226 x 10 3 2.172x 103
10~ 2.251x 1074 7.399x 1074
10~ 2.283 x 10 4.052 x 104
10~ 2.487 x 10 °° 2.459 x 10 ~°
10~ 2.842x10°° 2.725x 10 °°
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II. CONCLUSION

The numerical results show that the accuracy of the
proposed method when compared with the standard
collocation tan method improves as ¢ tends to zero.
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