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ABSTRACT 
 

Computational numerical simulation has increasingly become a very important approach for solving complex 

practical problems in engineering and science. It provides an alternative tool of scientific investigation, instead of 

carrying out expensive, time-consuming experiments in laboratories. Mesh free (MF) methods are among the breed 

of numerical analysis technique that are being vigorously developed to avoid the drawbacks that traditional methods 

like Finite Element method (FEM) possess. The Element Free Galerkin (EFG) method is a meshless method in 

which only a set of nodes and a description of model’s boundary are required to generate the discrete equations. 

Although it is considered meshless, the EFG utilizes a background mesh to assembly the equations system that 

describes the problem. In this paper the EFG method is applied to 2-D beam problem and results obtained using 

MATLAB program are compared with the analytical solution by using Timoshenko Beam Theory.  
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I. INTRODUCTION 

 

The development of the finite element method (FEM) in 

the 1950s was one of the most important advances in the 

field of numerical methods. The FEM is a robust and 

thoroughly developed method, and hence it is widely 

used in engineering fields due to its versatility for 

complex geometry and flexibility for many types of 

linear and non-linear problems. This mesh based 

numerical methods (FEM, FDM, CFD etc.) despite of 

great success; suffer from difficulties in some aspects, 

which limit their applications in many complex 

problems such as crack propagation, problems with 

phase change, large-strain deformations, etc.  

 

The finite element methods are well established and 

powerful computational techniques which are used for 

modelling and analysis of physical phenomena in 

different fields of engineering and applied sciences, but 

it is with some shortcomings that rely on meshes or 

elements that are connected together by nodes in a 

properly predefined manner. The following limitations 

of FEM are becoming increasingly evident [1]: 

 

 In stress calculations, the stresses obtained using 

FEM packages are discontinuous and often less 

accurate. The need for full compatibility in the 

assumed displacement field in the FEM results in 

the loss of freedom in the shape function 

construction. 

 When handling large deformation, considerable 

accuracy can be lost and the computation can even 

break down because of element distortions. 

 It is rather difficult to simulate both crack growth 

with arbitrary and complex paths and phase 

transformations due to discontinuities that do not 

coincide with the original nodal lines. 

 It is very difficult to simulate the breakage of 

material into a large number of fragments as FEM is 

essentially based on continuum mechanics, in which 

the elements formulated cannot be broken. The 

elements can either be totally ‘‘eroded’’ or stay as a 

whole piece. This usually leads to a 

misrepresentation of the breakage path. Serious error 

can occur because the nature of the problem is 

nonlinear, and therefore the results are highly path 

dependent. 
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 Remesh approaches have been proposed for 

handling these types of problems in FEM. In the 

remesh approach, the problem domain is remeshed 

at steps during the simulation process to prevent the 

severe distortion of meshes and to allow the nodal 

lines to remain coincident with the discontinuity 

boundaries. For this purpose, complex, robust, and 

adaptive mesh generation processors have to be 

developed. However, these processors are only 

workable for 2D problems. There are no reliable 

processors available for creating quality hexahedral 

meshes for 3D problems due to technical difficulty. 

 Adaptive processors require ‘‘mappings’’ of field 

variables between meshes in successive stages in 

solving the problem. This mapping process often 

leads to additional computation as well as a 

degradation of accuracy. In addition, for large 3D 

problems, the computational cost of remeshing at 

each step becomes very high, even if an adaptive 

scheme is available. 

 FDM works very well for a large number of 

problems, especially for solving fluid dynamics 

problems. It suffers from a major disadvantage in 

that it relies on regularly distributed nodes. 

Therefore, studies have been conducted for a long 

time to develop methods using irregular grids. 

Efforts in this direction are still on. 

 

II. METHODS AND MATERIAL 
 

2. Mesh Free Method 

 

A recent strong interest is focused on the next generation 

computational methods meshfree methods, which are 

expected to be superior to conventional mesh based 

FEM in many applications[5].  The key idea of the 

meshfree methods is to provide accurate and stable 

numerical solutions for integral equations or PDEs with 

all kinds of possible boundary conditions with a set of 

arbitrarily distributed nodes (or particles) without using 

any mesh that provides the connectivity of these nodes 

or particles. 

 

 

(a) FEM: nodes and                       (b) MF: only nodes 

         Elements 

Figure 1: Modelling in the FEM and MF 

 

Meshless methods are used to establish systems of 

algebraic equations for the domain altogether of a 

problem without a predefined mesh. These methods 

operate with a set of distributed points inside the domain 

Ω (fig.1) as well as with sets of points distributed on its 

boundary to represent (but not discretize) the domain of 

the problem and its boundary. This set of distributed 

points does not generate a mesh, meaning that it is not 

required any information about the relations between 

these points (Liu, 2004) (Belytschko et al, 1996). 

The principal attraction of mesh free methods is the 

possibility of simplifying adaptivity and problems with 

moving boundaries and discontinuities, such as phase 

changes or cracks. In crack growth problems, for 

example, nodes can be added around a crack tip to 

capture the stress intensity factors with the desired 

accuracy; this nodal refinement can be moved with a 

propagating crack through a background arrangement of 

nodes associated with the global geometry. Adaptive 

meshing for a large verity of problems including linear 

and nonlinear stress analyses can be effectively treated 

by these methods in a simple manner. 

 

 
3. Element Free Galerkin Method (EFG): 

 

The Element Free Galerkin (EFG) method proposed by Belytschko et al (1994) is based on the diffuse element 

method developed by Nayroles et al (1992). In EFG method only a set of points and the description of the model of 

boundaries are necessary to generate the discrete equations. In EFG we use the moving least square (MLS) method 

for constructing the shape functions. Moving least square method was first proposed by Lancaster and Salkauskas 

(1981), as an interpolation method. It was used in element free methods by Belytschko et al. (1994), with use of 

Lagrange multiplier to invoke essential boundary. [2, 3] 
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3.1 System of Equation: 

 

Consider a displacement function u(x) of a field variable defined on the domain Ω, the approximated value of u(x) 

can be represented as, 

( )u x ≈ û (x) = 
1

( ) ( ) ( ) ( )
m

T

i i

i

p x a x P x a x


  

Where, P represents the polynomial basis function, m is the number of polynomial coefficients and a(x) is the 

unknown coefficient matrix. 

For 2-D problems, 

P
T
(x) = [1, x, y]         Linear, m=3 and    0 1 2( ) [ ( ) ( ) ( ) ,... ( )]T

ma x a x a x a x a x
 

 

The unknown parameters a(x) at any given point are determined by minimizing the difference between the local 

approximation at that point and the nodal parameters ui. Let the nodes whose supports include x be given local node 

numbers 1 to n. In order to determine the unknown coefficients a, a functional J is constructed. It sum up the 

weighted quadratic error for all nodes inside the support domain as 

                  J = 
1

ˆ( )( )
n

i i

i

W x x u u


  2
 = 

2

1

( )( ( ) ( ) )
n

T

i i i

i

W x x P x a x u


   

 Where n is the number of nodes in the neighbourhood of x for which the weight function, W(x — xi) ≠ 0, and ui 

refers to the nodal parameter of u at x = xi. 

 

The weights functions like cubic weight function, quartic weight, exponential weight etc, perform two actions, one 

as a medium of imparting smoothness or desired continuity to the approximation and other one, more important, is 

the establishment of the local nature of the approximation. The polynomial basis and the weight function together 

cast a major influence on the performance of the MLS method. Then we want to minimize this functional, so we 

differentiate with respect to the unknown vector a(x), containing the coefficient, 

J

a




= 0 

By inserting the expression for J, the equation ends up with 

                                        

2

1

( ( ) ( ) )
( )

Tn
i i

i

i

p x a x uJ
W x x

a a

 
 

 
                               

                                              = 
1

( )2( ( ) ( ) ) ( ) 0
T

n

i i i i

i

W x x P x a x u p x


    

                                              = 
1

( ) ( ) ( ) ( )
T

n

i i i

i

W x x P x P x a x


  = 
1

( ) ( )
n

i i i

i

W x x P x u


  

This can be written in a compact matrix form as, 

                               A(x) a(x) = B(x) U(x) 

Where the matrices are given by, 

                                     
1

( ) ( ) ( ) ( ) ( )
n

T

i i i

n

A x W x x P x P x M m m


     

                                     ( ) [ ( ) ( ).... ( ) ( )] ( )i i n nB x W x x P x W x x P x M m n      
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                                   U(x) = 

1

.
( 1)

.

n

u

M n

u

 
 
  
 
 
 

 

The unknown vector a(x) can now be determined as, 

                                  A(x) = A
-1

(x) B(x) U(x) 

By inserting this expression in, we get a new formulation of the displacement field, 

                                      
1

( )

ˆ ( ) ( ) ( ) ( ) ( ) ( )T T

x

u P x a x P x A x B x U x



  =
1

( ) ( )
n

i i

i

u x x u


  

So the displacement in a point x are approximated as a sum of shape functions multiplied with respectively 

displacement. 

 

The discrete equation system is obtained by imposition of boundary conditions using Lagrange’s multipliers in a 

weak form of a problem of linear elasticity and by making use of the approximation equations for field variables [2]: 

 

                                        
0T

K G U F

G q
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     
 

                                  Where, 

T
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In which, K is the stiffness matrix, G is the boundary condition matrix, U is the nodal displacements vector, λ is the 

Lagrange multipliers, F is the force vector and q is a boundary condition vector, and E  and v  are Young's modulus 

and Poisson’s ratio, respectively. 
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4. Numerical Examples 

 

In this section, a plane stress Timoshenko beam problem is solved using an EFG program written in MATLAB. This 

example serves to illustrate the accuracy of the EFG method by comparing it to the exact solution for both the 

displacements and stresses. 

 

 

Figure 2 : Timoshenko Beam 
 

Consider a beam of length L = 48 unit subjected to parabolic traction at the free end as shown in figure. The beam 

has characteristics height D=12 unit and is considered to be of unit depth and is assumed to be in a state of plane 

stress with P= 1000 unit, v  = 0.3 and E= 3.0 x 107. 

 

The exact analytical solution of Timoshenko beam is given by the following equations [2]. The expressions for 

displacements in x direction, ux, and in y direction, uy, are respectively: 

 
 

Where P, is the maximum load applied, E is the modulus of elasticity, x and y are the coordinates in x axis and y axis 

for 

the analyzed nodal point and Im is the inertial moment= D3/12. The stresses are given by: 

 

 
 

III. RESULTS AND DISCUSSION 

 

5. Numerical Results 

The solutions were obtained using a linear basis function with cubic spline weight function. In this paper, a set of 

uniform distributed scattered nodes is chosen, and a mesh of background cells is developed only for integration. The 

displacement and stress values along different section are plotted and comparative performance is evaluated with 

exact analytical solution. 

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 

450 

 

Figure 3 : Displacement for EFG and Exact 

 

 

Figure 4 : σx for EFG and Exact 
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Figure 5 : σxy for EFG and Exact 

 

IV. CONCLUSION 

 
The details of the Element Free Galerkin (EFG) method 

and its numerical implementation have been presented 

for 2-D beam problem. It is observed that EFG method 

is quite promising in the performance as the results 

calculated from analytical solution and proposed mesh 

free method are quite same. We also verify that the 

results for normal stress and displacement fields are 

better than the response of the shear stress field because 

we utilize a linear basis in the approach. 

 

The running time of the two-dimensional EFG program 

written for this paper is substantially greater than that of 

a comparable finite element program. However, the 

potential for meshless methods for certain classes of 

problems diminishes the importance of these 

disadvantages. 
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